Skip to main content

Advertisement

Log in

Optimizing support vector regression using grey wolf optimizer for enhancing energy efficiency and building prototype architecture

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In this era of increasing energy demand, optimizing energy consumption in building systems is critical for enhancing sustainability and operational efficiency. Residential buildings consume significant energy, with heating load (HL) and cooling load (CL) being major contributors. While previous research explored modeling techniques, there's a need for more precise and optimized approaches. It has been observed that accurately predicting heating and cooling load can help in designing better building prototypes with improved energy efficiency. Researchers have explored multiple computational intelligence approaches that have improved the prediction of energy consumption of buildings. However, the applied approaches have some limitations. To improve the prediction of HL and CL of buildings and to overcome the limitations of the existing approaches, this study employs a support vector regression (SVR) fine-tuned with Grey Wolf Optimization (GWO) for enhancing energy efficiency and building prototype architecture by predicting HL and CL. To establish the supremacy of the proposed approach experiments are conducted on a benchmark dataset and performance is compared with four prominent machine learning (ML) algorithms namely linear regression, decision tree, random forest, and deep neural networks to predict HL and CL. The results demonstrate that SVR-GWO outperforms the others, achieving an r-score of 99.77% for HL and 97.90% for CL. Additionally, various metrics like Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE) are computed to evaluate model performance. The HL model achieved MAE, MSE, and RMSE scores of 0.3422, 0.2354, and 0.4852, respectively. Similarly, the CL model achieved scores of 0.8387, 1.9426, and 1.3937, respectively. The results show better performance of the proposed model in comparison to the ML models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Available with corresponding author on reasonable request.

References

  1. Pektezel, O., Acar, H.I.: Experimental comparison of R290 and R600a and prediction of performance with machine learning algorithms. Sci. Technol. Built. Environ. 29(5), 508–522 (2023). https://doi.org/10.1080/23744731.2023.2197815

    Article  MATH  Google Scholar 

  2. Noailly, J.: Improving the energy efficiency of buildings: the impact of environmental policy on technological innovation. Energy Econ. 34(3), 795–806 (2012). https://doi.org/10.1016/j.eneco.2011.07.015

    Article  MATH  Google Scholar 

  3. Pérez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy consumption information. Energy Build. 40(3), 394–398 (2008). https://doi.org/10.1016/j.enbuild.2007.03.007

    Article  Google Scholar 

  4. Dutta, S., Gunay, H.B., Bucking, S.: Benchmarking operational performance of buildings by text mining tenant surveys. Sci Technol Built Environ 27(6), 741–755 (2021). https://doi.org/10.1080/23744731.2020.1851545

    Article  MATH  Google Scholar 

  5. Mehmood, M.U., Chun, D., Zeeshan, A., Han, H., Jeon, G., Chen, K.: A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy Build. 202, 109383 (2019). https://doi.org/10.1016/j.enbuild.2019.109383

  6. Han, H.J., Jeon, Y.I., Lim, S.H., Kim, W.W., Chen, K.: New developments in illumination, heating and cooling technologies for energy-efficient buildings. Energy 35(6), 2647–2653 (2010). https://doi.org/10.1016/j.energy.2009.05.020

    Article  MATH  Google Scholar 

  7. Diakaki, C., Grigoroudis, E., Kolokotsa, D.: Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energy Build. 40(9), 1747–1754 (2008). https://doi.org/10.1016/j.enbuild.2008.03.002

    Article  Google Scholar 

  8. Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 49, 560–567 (2012). https://doi.org/10.1016/j.enbuild.2012.03.003

    Article  Google Scholar 

  9. Baghoolizadeh, M., Rostamzadeh-Renani, M., Rostamzadeh-Renani, R., Toghraie, D.: Multi-objective optimization of Venetian blinds in office buildings to reduce electricity consumption and improve visual and thermal comfort by NSGA-II. Energy Build. 278, 112639 (2023). https://doi.org/10.1016/j.enbuild.2022.112639

    Article  Google Scholar 

  10. Trčka, M., Hensen, J.L.M.: Overview of HVAC system simulation. Autom. Constr. 19(2), 93–99 (2010). https://doi.org/10.1016/j.autcon.2009.11.019

    Article  MATH  Google Scholar 

  11. Mao, J., Grammenos, R., Karagiannis, K.: Data analysis and interpretable machine learning for HVAC predictive control: a case-study based implementation. Sci. Technol. Built. Environ. 29(7), 698–718 (2023). https://doi.org/10.1080/23744731.2023.2239081

    Article  MATH  Google Scholar 

  12. Behzadi Hamooleh, M., Torabi, A., Baghoolizadeh, M.: Multi-objective optimization of energy and thermal comfort using insulation and phase change materials in residential buildings. Build. Environ. (2024). https://doi.org/10.1016/j.buildenv.2024.111774

    Article  Google Scholar 

  13. Fabrizio, E., Corgnati, S.P., Causone, F., Filippi, M.: Numerical comparison between energy and comfort performances of radiant heating and cooling systems versus air systems. HVAC&R Res. 18(4), 692–708 (2012). https://doi.org/10.1080/10789669.2011.578700

    Article  MATH  Google Scholar 

  14. Elkhoukhi, H., Naitmalek, Y., Berouine, A., Bakhouya, M., Elouadghiri, D., Essaaidi, M.: Towards a real-time occupancy detection approach for smart buildings. Procedia Comput. Sci. 134, 114–120 (2018). https://doi.org/10.1016/j.procs.2018.07.151

    Article  Google Scholar 

  15. Png, E., Srinivasan, S., Bekiroglu, K., Chaoyang, J., Su, R., Poolla, K.: An internet of things upgrade for smart and scalable heating, ventilation and air-conditioning control in commercial buildings. Appl. Energy 239, 408–424 (2019). https://doi.org/10.1016/j.apenergy.2019.01.229

    Article  Google Scholar 

  16. Baghoolizadeh, M., Rostamzadeh-Renani, M., Dehkordi, S.A.H.H., Rostamzadeh-Renani, R., Toghraie, D.: A prediction model for CO2 concentration and multi-objective optimization of CO2 concentration and annual electricity consumption cost in residential buildings using ANN and GA. J. Clean. Prod. (2022). https://doi.org/10.1016/j.jclepro.2022.134753

    Article  Google Scholar 

  17. Blom, I., Itard, L., Meijer, A.: Environmental impact of building-related and user-related energy consumption in dwellings. Build. Environ. 46(8), 1657–1669 (2011). https://doi.org/10.1016/j.buildenv.2011.02.002

    Article  Google Scholar 

  18. Bayraktar, M.E., Owens, C.R.: LEED implementation guide for construction practitioners. J. Arch. Eng. 16(3), 85–93 (2010). https://doi.org/10.1061/(asce)ae.1943-5568.0000013

    Article  MATH  Google Scholar 

  19. Baghoolizadeh, M., Nadooshan, A.A., Raisi, A., Malekshah, E.H.: The effect of photovoltaic shading with ideal tilt angle on the energy cost optimization of a building model in European cities. Energy Sustain. Dev. 71, 505–516 (2022). https://doi.org/10.1016/j.esd.2022.10.016

    Article  Google Scholar 

  20. Ntakolia, C., Anagnostis, A., Moustakidis, S., Karcanias, N.: Machine learning applied on the district heating and cooling sector: a review. Energy Syst. 13(1), 1–30 (2022). https://doi.org/10.1007/s12667-020-00405-9

    Article  MATH  Google Scholar 

  21. Baghoolizadeh, M., et al.: Occupant’s thermal comfort augmentation and thermal load reduction in a typical residential building using genetic algorithm. Case Stud. Therm. Eng. (2024). https://doi.org/10.1016/j.csite.2024.104491

    Article  MATH  Google Scholar 

  22. Baghoolizadeh, M., Nadooshan, A.A., Dehkordi, S.A.H.H., Rostamzadeh-Renani, M., Rostamzadeh-Renani, R., Afrand, M.: Multi-objective optimization of annual electricity consumption and annual electricity production of a residential building using photovoltaic shadings. Int. J. Energy Res. 46(15), 21172–21216 (2022). https://doi.org/10.1002/er.8401

    Article  Google Scholar 

  23. Catalina, T., Virgone, J., Blanco, E.: Development and validation of regression models to predict monthly heating demand for residential buildings. Energy Build. 40(10), 1825–1832 (2008). https://doi.org/10.1016/j.enbuild.2008.04.001

    Article  Google Scholar 

  24. Zhang, J., Haghighat, F.: Development of Artificial Neural Network based heat convection algorithm for thermal simulation of large rectangular cross-sectional area Earth-to-Air Heat Exchangers. Energy Build. 42(4), 435–440 (2010). https://doi.org/10.1016/j.enbuild.2009.10.011

    Article  MATH  Google Scholar 

  25. Hou, Z., Lian, Z., Yao, Y., Yuan, X.: Cooling load prediction based on the combination of rough set theory and support vector machine. HVAC R Res. 12(2), 337–352 (2006). https://doi.org/10.1080/10789669.2006.10391182

    Article  MATH  Google Scholar 

  26. Li, Q., Meng, Q., Cai, J., Yoshino, H., Mochida, A.: Applying support vector machine to predict hourly cooling load in the building. Appl. Energy 86(10), 2249–2256 (2009). https://doi.org/10.1016/j.apenergy.2008.11.035

    Article  MATH  Google Scholar 

  27. Lu, C., Li, S., Reddy Penaka, S., Olofsson, T.: Automated machine learning-based framework of heating and cooling load prediction for quick residential building design. Energy (2023). https://doi.org/10.1016/j.energy.2023.127334

    Article  Google Scholar 

  28. Bashir, M.B., Alotaib, A.A.: Smart buildings cooling and heating load forecasting models: review. Int. J. Comput. Sci. Netw. Secur. 20(12), 79–94 (2020). https://doi.org/10.22937/IJCSNS.2020.20.12.9

    Article  Google Scholar 

  29. Wu, X., et al.: Intelligent optimization framework of near zero energy consumption building performance based on a hybrid machine learning algorithm. Renew. Sustain. Energy Rev. (2022). https://doi.org/10.1016/j.rser.2022.112703

    Article  Google Scholar 

  30. Roy, S.S., Samui, P., Nagtode, I., Jain, H., Shivaramakrishnan, V., Mohammadi-ivatloo, B.: Forecasting heating and cooling loads of buildings: a comparative performance analysis. J. Ambient. Intell. Hum. Comput. 11(3), 1253–1264 (2020). https://doi.org/10.1007/s12652-019-01317-y

    Article  Google Scholar 

  31. Ciulla, G., D’Amico, A.: Building energy performance forecasting: a multiple linear regression approach. Appl. Energy 253, 113500 (2019)

    Article  MATH  Google Scholar 

  32. Fisk, W.J.: Health and productivity gains from better indoor environments and their relationship with building energy efficiency. Annu. Rev. Energy Env. 25, 537–566 (2000). https://doi.org/10.1146/annurev.energy.25.1.537

    Article  MATH  Google Scholar 

  33. Alade, K.T., Lawal, A.F., Akinyele, D.: Smart materials and technologies for next generation energy-efficient buildings. In: Special Issue on the Foundational Support Systems, IEEE Smart Grid Resource Center (2017)

  34. Pham, A.-D., Ngo, N.-T., Ha Truong, T.T., Huynh, N.-T., Truong, N.-S.: Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability. J. Clean. Prod. 260, 121082 (2020). https://doi.org/10.1016/j.jclepro.2020.121082

    Article  MATH  Google Scholar 

  35. Dong, B., Cao, C., Lee, S.E.: Applying support vector machines to predict building energy consumption in tropical region. Energy Build. 37(5), 545–553 (2005)

    Article  MATH  Google Scholar 

  36. de Oliveira, A.V., Dazzi, M.C.S., da Fernandes, A.M.R., Dazzi, R.L.S., Ferreira, P., Leithardt, V.R.Q.: Decision support using machine learning indication for financial investment. Fut. Internet 14(11), 304 (2022)

    Article  Google Scholar 

  37. Laurensia, Y., Young, J.C., Suryadibrata, A.: Early detection of diabetic retinopathy cases using pre-trained EfficientNet and XGBoost. Int. J. Adv. Soft Comput. Appl. 12(3), 101–111 (2020)

    Google Scholar 

  38. Kaytez, F., Taplamacioglu, M.C., Cam, E., Hardalac, F.: Forecasting electricity consumption: a comparison of regression analysis, neural networks and least squares support vector machines. Int. J. Electr. Power Energy Syst. 67, 431–438 (2015)

    Article  Google Scholar 

  39. Bui, X.N., Moayedi, H., Rashid, A.S.A.: Developing a predictive method based on optimized M5Rules–GA predicting heating load of an energy-efficient building system. Eng. Comput. 36(3), 931–940 (2020). https://doi.org/10.1007/s00366-019-00739-8

    Article  MATH  Google Scholar 

  40. Mohamed, N., Al-Jaroodi, J., Lazarova-Molnar, S.: Leveraging the capabilities of industry 4.0 for improving energy efficiency in smart factories. IEEE Access 7, 18008–18020 (2019)

    Article  MATH  Google Scholar 

  41. Loche, I., de Souza, C.B., Spaeth, A.B., Neves, L.O.: Decision-making pathways to daylight efficiency for office buildings with balconies in the tropics. J. Build. Eng. (2021). https://doi.org/10.1016/j.jobe.2021.102596

    Article  Google Scholar 

  42. Gercek, M., DurmuşArsan, Z.: Energy and environmental performance based decision support process for early design stages of residential buildings under climate change. Sustain. Cities Soc. (2019). https://doi.org/10.1016/j.scs.2019.101580

    Article  MATH  Google Scholar 

  43. Yao, J., Zhong, J., Yang, N.: Indoor air quality test and air distribution CFD simulation in hospital consulting room. Int. J. Low-Carbon Technol. 17, 33–37 (2022). https://doi.org/10.1093/ijlct/ctab084

    Article  MATH  Google Scholar 

  44. Li, J., Xu, W., Cui, P., Qiao, B., Zhao, C., Wu, S.: Research on a systematical design method for nearly zero-energy buildings. Sustainability (Switzerland) (2019). https://doi.org/10.3390/su11247032

    Article  MATH  Google Scholar 

  45. Nocera, F., LoFaro, A., Costanzo, V., Raciti, C.: Daylight performance of classrooms in a mediterranean school heritage building. Sustainability (Switzerland) (2018). https://doi.org/10.3390/su10103705

    Article  MATH  Google Scholar 

  46. Tam, C., Zhao, Y., Liao, Z., Zhao, L.: Mitigation strategies for overheating and high carbon dioxide concentration within institutional buildings: a case study in Toronto, Canada. Buildings (2020). https://doi.org/10.3390/BUILDINGS10070124

    Article  MATH  Google Scholar 

  47. Futrell, B.J., Ozelkan, E.C., Brentrup, D.: Bi-objective optimization of building enclosure design for thermal and lighting performance. Build. Environ. 92, 591–602 (2015). https://doi.org/10.1016/j.buildenv.2015.03.039

    Article  MATH  Google Scholar 

  48. García Kerdan, I., Raslan, R., Ruyssevelt, P.: An exergy-based multi-objective optimisation model for energy retrofit strategies in non-domestic buildings. Energy 117, 506–522 (2016). https://doi.org/10.1016/j.energy.2016.06.041

    Article  Google Scholar 

  49. Lu, S., Lin, B., Wang, C.: Investigation on the potential of improving daylight efficiency of office buildings by curved facade optimization. Build. Simul. 13(2), 287–303 (2020). https://doi.org/10.1007/s12273-019-0586-5

    Article  MATH  Google Scholar 

  50. Vering, C., Wüllhorst, F., Mehrfeld, P., Müller, D.: Towards an integrated design of heat pump systems: application of process intensification using two-stage optimization. Energy Convers. Manag. (2021). https://doi.org/10.1016/j.enconman.2021.114888

    Article  Google Scholar 

  51. Wang, X., Xu, Y., Bao, Z., Li, W., Liu, F., Jiang, Y.: Operation optimization of a solar hybrid CCHP system for adaptation to climate change. Energy Convers. Manag. (2020). https://doi.org/10.1016/j.enconman.2020.113010

    Article  MATH  Google Scholar 

  52. Aftab, M., Chen, C., Chau, C.K., Rahwan, T.: Automatic HVAC control with real-time occupancy recognition and simulation-guided model predictive control in low-cost embedded system. Energy Build. 154, 141–156 (2017). https://doi.org/10.1016/j.enbuild.2017.07.077

    Article  Google Scholar 

  53. Fan, C., Xiao, F.: Mining big building operational data for improving building energy efficiency: a case study. Build. Serv. Eng. Res. Technol. 39(1), 117–128 (2018). https://doi.org/10.1177/0143624417704977

    Article  MATH  Google Scholar 

  54. Qiu, S., Li, Z., Li, Z., Zhang, X.: Model-free optimal chiller loading method based on Q-learning. Sci Technol Built Environ 26(8), 1100–1116 (2020). https://doi.org/10.1080/23744731.2020.1757328

    Article  MATH  Google Scholar 

  55. Zhuang, C., Wang, S., Shan, K.: A risk-based robust optimal chiller sequencing control strategy for energy-efficient operation considering measurement uncertainties. Appl. Energy (2020). https://doi.org/10.1016/j.apenergy.2020.115983

    Article  MATH  Google Scholar 

  56. Li, B., Wu, B., Peng, Y., Cai, W.: Tube-based robust model predictive control of multi-zone demand-controlled ventilation systems for energy saving and indoor air quality. Appl. Energy (2022). https://doi.org/10.1016/j.apenergy.2021.118297

    Article  MATH  Google Scholar 

  57. Alimohammadi, H., et al.: Gray box time variant clogging behaviour and pressure drop prediction of the air filter in the HVAC system. E3S Web Confer. (2021). https://doi.org/10.1051/e3sconf/202124610002

    Article  MATH  Google Scholar 

  58. Cheung, H., Wang, S.: Optimal design of data center cooling systems concerning multi-chiller system configuration and component selection for energy-efficient operation and maximized free-cooling. Renew. Energy 143, 1717–1731 (2019). https://doi.org/10.1016/j.renene.2019.05.127

    Article  MATH  Google Scholar 

  59. May-Ostendorp, P., Henze, G.P., Corbin, C.D., Rajagopalan, B., Felsmann, C.: Model-predictive control of mixed-mode buildings with rule extraction. Build. Environ. 46(2), 428–437 (2011). https://doi.org/10.1016/j.buildenv.2010.08.004

    Article  Google Scholar 

  60. Azzeh, M., Elsheikh, Y., Nassif, A.B., Angelis, L.: Examining the performance of kernel methods for software defect prediction based on support vector machine. Sci. Comput. Program. (2023). https://doi.org/10.1016/j.scico.2022.102916

    Article  MATH  Google Scholar 

  61. Mustaqeem, M., Saqib, M.: Principal component based support vector machine (PC-SVM): a hybrid technique for software defect detection. Cluster Comput. 24(3), 2581–2595 (2021). https://doi.org/10.1007/s10586-021-03282-8

    Article  MATH  Google Scholar 

  62. Yu, Z., Haghighat, F., Fung, B.C.M., Yoshino, H.: A decision tree method for building energy demand modeling. Energy Build. 42(10), 1637–1646 (2010)

    Article  MATH  Google Scholar 

  63. Sakib, M., Siddiqui, T.: Anomaly detection of ECG time series signal using auto encoders neural network. In: 2023 7th International Conference On Computing, Communication, Control and Automation (ICCUBEA), pp. 1–7. IEEE (2023)

  64. Fu, Q., Li, K., Chen, J., Wang, J., Lu, Y., Wang, Y.: Building energy consumption prediction using a deep-forest-based DQN method. Buildings 12(2), 131 (2022)

    Article  MATH  Google Scholar 

  65. Sakib, M., Mustajab, S.: Enhanced multi-variate time series prediction through statistical-deep learning integration: the VAR-stacked LSTM model. SN Comput. Sci. 5(5), 573 (2024). https://doi.org/10.1007/s42979-024-02950-x

    Article  MATH  Google Scholar 

  66. Tiberiu Catalina, V.I., Virgone, J.: Study on the impact of the building form on the energy consumption. In: 12th Conference of International Building Performance Simulation Association, Sydney, 2011, pp. 14–16

  67. Pessenlehner, W., Ardeshir, M.: Building morphology, transparence and energy performance. Build. Simul. 2003, 1025–1032 (2003)

    MATH  Google Scholar 

  68. Anwar, K., Siddiqui, J., SaquibSohail, S.: Machine learning techniques for book recommendation: an overview. SSRN Electron. J. (2019). https://doi.org/10.2139/ssrn.3356349

    Article  MATH  Google Scholar 

  69. Lu, C., Li, S., Reddy Penaka, S., Olofsson, T.: Automated machine learning-based framework of heating and cooling load prediction for quick residential building design. Energy 274, 127334 (2023). https://doi.org/10.1016/j.energy.2023.127334

    Article  MATH  Google Scholar 

  70. Le, L.T., Nguyen, H., Zhou, J., Dou, J., Moayedi, H.: Estimating the heating load of buildings for smart city planning using a novel artificial intelligence technique PSO-XGBoost. Appl. Sci. (Switzerland) (2019). https://doi.org/10.3390/APP9132714

    Article  Google Scholar 

  71. Mehdizadeh Khorrami, B., Soleimani, A., Pinnarelli, A., Brusco, G., Vizza, P.: Forecasting heating and cooling loads in residential buildings using machine learning: a comparative study of techniques and influential indicators. Asian J. Civil Eng. 25(2), 1163–1177 (2024). https://doi.org/10.1007/s42107-023-00834-8

    Article  Google Scholar 

  72. Zheng, S., Lyu, Z., Foong, L.K.: Early prediction of cooling load in energy-efficient buildings through novel optimizer of shuffled complex evolution. Eng. Comput. 38(s1), 105–119 (2022). https://doi.org/10.1007/s00366-020-01140-6

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Authors' contributions Conceptualization, MS, and KA; data curation, SA and MS; formal analysis, KA, and SA; investigation,MS, and SA; methodology, SA, and KA.; resources,KA and MS; supervision KA; validation, KA and MS; visualization, MS; writing—original draft, MS and KA; writing—review and editing, KA, and SA.

Corresponding author

Correspondence to Khalid Anwar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Actual and Predicted Datasets

Appendix A: Actual and Predicted Datasets

Actual heating load

Predicted heating load

Actual cooling load

Predicted cooling load

16.47

16.28619039

16.9

17.75647556

13.17

13.5217462

16.39

16.58607045

32.82

32.87057262

32.78

32.75364

41.32

41.84365055

46.23

45.27278397

16.69

17.10118098

19.76

20.27642804

23.8

23.33938037

24.61

28.80313739

24.31

24.45379317

25.63

25.56744018

28.67

28.5577854

29.62

29.493621

19.52

17.97747944

22.72

21.48899657

28.07

28.23337872

34.14

33.49994759

18.46

18.52804671

21.53

21.50269444

33.08

32.76276034

34.11

34.36212416

29.79

29.76613866

29.92

29.95829823

10.37

10.43073144

13.44

13.3538268

17.69

18.13548493

20.82

20.43445393

36.95

37.13652094

36.87

37.08740502

36.64

36.36029541

37.01

36.20665215

12.3

11.94841249

15.24

14.38566563

14.7

14.37226551

16.77

16.51540506

32.38

33.1072694

33.62

34.44316779

28.67

28.35888858

32.43

31.04869531

41.4

40.74798733

45.29

44.43401204

11.7

11.51037752

13.88

14.61694506

36.86

36.17397028

34.25

41.00160141

15.37

14.99636252

19.18

18.83324263

35.89

36.08440617

43.3

39.76115679

36.57

36.35007852

35.39

36.23880695

28.91

28.51655225

29.64

28.15351274

17.5

17.2352218

21.13

20.71207467

13.99

14.6936826

14.35

15.10403603

10.42

10.24012956

13.39

13.46633921

12.3

12.43987192

15.44

15.10581576

16.93

16.75231377

20.03

20.23429812

26.84

26.34722411

30.17

29.90770027

35.94

35.45830208

43.33

42.80880889

28.18

28.19598947

30.18

30.20053105

32.72

32.74932699

33.78

34.67861621

36.9

36.73882758

34.43

34.82480754

36.06

35.82810014

34.94

36.47571454

10.7

10.53896433

13.87

14.0228912

28.15

27.9593248

30

30.44786486

12.32

11.97535639

14.92

14.34505844

6.37

6.137418949

11.29

11.52062456

31.84

31.67713036

31.6

31.22357879

6.79

6.700922139

12.05

11.33944917

6.4

6.136718786

11.67

11.43064739

7.1

7.777107951

12.14

13.43504329

10.8

10.72060708

14.28

14.01138462

28.66

29.0809019

34.73

35.39306762

32.46

32.47239949

35.62

36.18249663

34.95

35.22045737

35.04

37.26545668

12.93

13.33146142

15.83

16.8218438

13

13.20962699

15.87

16.08933772

40.12

39.71544024

37.26

38.81610334

12.27

12.13469188

14.97

14.25648447

15.32

15.23130539

19.42

19.55763975

12.45

12.08775421

15.1

14.84360544

24.6

25.21626816

29.31

32.26367189

40.68

39.86387541

40.36

38.43767899

35.99

36.70649095

36.07

36.97466879

14.37

13.74949982

16.54

15.97559979

16.54

16.27448052

16.88

17.53111044

13.02

13.19392765

16.06

15.86823798

22.89

23.93242384

28.88

29.18464323

28.61

28.66020835

30.2

30.93698915

37.1

36.63422555

35.29

34.29442435

35.45

36.80057306

41.86

38.08615735

11.68

11.72586081

13.9

15.13483247

13

12.87415387

14.47

14.25073064

12.03

11.7945522

13.79

14.26997565

29.14

28.83619141

29.58

29.87868614

32.84

32.3249674

32.88

33.56332841

12.47

12.73168907

15.14

15.88280286

24.23

24.25820112

25.02

24.28987356

31.64

30.92151647

36.86

34.66091757

12.16

12.07059206

15.18

14.74012765

29.06

28.98534056

33.84

34.73713983

24.7

25.1662462

28.77

29.1389681

32.26

32.27297389

33.37

33.36626711

19.34

19.20465521

23.49

22.23161053

24.38

24.3118361

25.91

25.88759823

40

39.61133392

36.26

43.38777685

10.68

10.5736248

14.3

14.01880548

13.91

14.11512477

14.89

15.11550432

11.6

11.32294241

13.7

14.27732773

12.43

14.03320409

15.59

16.44716163

26.46

26.41792363

27.4

27.60814666

36.13

36.15952396

37.58

37.47367654

37.12

37.04499275

35.28

35.66413434

17.37

17.21997634

21.08

20.34454539

15.18

15.37539329

19.34

19.2747709

25.38

25.90761017

26.72

25.42596326

11.13

11.2933534

14.61

13.63699882

12.95

13.30830389

15.95

16.12671845

36.59

35.90268327

36.44

36.92290393

12.86

12.82262697

16.17

16.25451621

25.36

26.15633189

32.04

31.56450128

28.31

28.54620742

34.15

34.48388864

10.66

10.63333403

13.67

14.00416638

10.71

10.48697358

13.8

13.69034109

40.78

40.99762932

39.55

40.07978288

28.37

28.28320667

29.28

30.03381219

10.36

10.08873302

13.43

13.33487996

29.83

29.62318806

29.82

29.34860697

29.43

29.39403003

28.38

31.55831962

16.76

15.93408613

17.36

17.81444694

22.58

22.76010255

28.51

32.63282474

16.44

16.7924671

17.1

17.89418346

14.08

14.36415297

17.02

16.99882534

12.41

12.3830025

15.28

14.98180706

33.12

32.68675788

34.17

34.25080542

32.31

32.42991856

29.69

28.28702979

24.63

24.43912764

26.37

25.86930268

14.72

14.70658256

18.1

17.95873153

11.69

12.17875378

14.76

15.00138023

14.66

14.37244019

17.37

16.8936385

11.2

11.17029246

14.73

14.14830561

10.39

10.14058949

13.6

13.47046415

12.12

12.54423284

14.97

15.24859049

19.68

18.95491229

29.6

29.24154283

29.06

28.55576551

29.34

32.85763178

11.16

11.54200283

14.39

13.93530359

23.93

25.79088643

29.4

30.97943807

14.6

15.12330781

15.3

15.32202501

29.68

29.65614861

29.44

30.37305798

17.88

18.32345028

21.4

20.81106177

14.53

14.57468434

16.9

17.20226656

35.48

35.46418321

41.26

37.06474264

24.23

24.24590749

25.72

26.72295452

39.97

40.35415864

40.85

41.17450537

15.55

15.75113012

21.33

21.58707707

32.31

33.8886278

34.05

34.64328682

14.6

14.66196643

15.14

15.24622246

13.97

14.19931172

16.08

16.1800813

14.4

14.23737555

17.27

17.09899635

19

18.65223988

22.25

21.54101322

32.06

32.1475139

35.71

33.29112141

42.96

42.01976699

39.56

40.48597091

14.5

14.16886589

17.03

16.9963832

18.88

19.25280487

22.07

22.00316099

10.75

10.46976637

14.27

14.14110341

40.6

39.77406174

39.85

39.52722598

28.55

28.51533674

29.59

30.28633529

31.53

31.51971014

37.19

36.93795136

35.73

35.20283443

39.92

37.70369141

11.42

11.49351271

14.75

14.02583521

10.07

10.19402617

13.21

13.67678601

28.09

27.24248544

34.33

34.38479155

35.01

35.46456281

33.14

35.48565922

38.98

39.31853341

45.97

40.57364681

36.66

36.64224347

35.92

36.3494153

29.34

28.87252591

33.37

32.94020481

29.54

28.98590271

33.98

33.32659197

12.17

12.31027809

15.2

15.60937045

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakib, M., Ahmad, S., Anwar, K. et al. Optimizing support vector regression using grey wolf optimizer for enhancing energy efficiency and building prototype architecture. Cluster Comput 28, 60 (2025). https://doi.org/10.1007/s10586-024-04802-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04802-y

Keywords