Abstract
In this era of increasing energy demand, optimizing energy consumption in building systems is critical for enhancing sustainability and operational efficiency. Residential buildings consume significant energy, with heating load (HL) and cooling load (CL) being major contributors. While previous research explored modeling techniques, there's a need for more precise and optimized approaches. It has been observed that accurately predicting heating and cooling load can help in designing better building prototypes with improved energy efficiency. Researchers have explored multiple computational intelligence approaches that have improved the prediction of energy consumption of buildings. However, the applied approaches have some limitations. To improve the prediction of HL and CL of buildings and to overcome the limitations of the existing approaches, this study employs a support vector regression (SVR) fine-tuned with Grey Wolf Optimization (GWO) for enhancing energy efficiency and building prototype architecture by predicting HL and CL. To establish the supremacy of the proposed approach experiments are conducted on a benchmark dataset and performance is compared with four prominent machine learning (ML) algorithms namely linear regression, decision tree, random forest, and deep neural networks to predict HL and CL. The results demonstrate that SVR-GWO outperforms the others, achieving an r-score of 99.77% for HL and 97.90% for CL. Additionally, various metrics like Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE) are computed to evaluate model performance. The HL model achieved MAE, MSE, and RMSE scores of 0.3422, 0.2354, and 0.4852, respectively. Similarly, the CL model achieved scores of 0.8387, 1.9426, and 1.3937, respectively. The results show better performance of the proposed model in comparison to the ML models.














Similar content being viewed by others
Data availability
Available with corresponding author on reasonable request.
References
Pektezel, O., Acar, H.I.: Experimental comparison of R290 and R600a and prediction of performance with machine learning algorithms. Sci. Technol. Built. Environ. 29(5), 508–522 (2023). https://doi.org/10.1080/23744731.2023.2197815
Noailly, J.: Improving the energy efficiency of buildings: the impact of environmental policy on technological innovation. Energy Econ. 34(3), 795–806 (2012). https://doi.org/10.1016/j.eneco.2011.07.015
Pérez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy consumption information. Energy Build. 40(3), 394–398 (2008). https://doi.org/10.1016/j.enbuild.2007.03.007
Dutta, S., Gunay, H.B., Bucking, S.: Benchmarking operational performance of buildings by text mining tenant surveys. Sci Technol Built Environ 27(6), 741–755 (2021). https://doi.org/10.1080/23744731.2020.1851545
Mehmood, M.U., Chun, D., Zeeshan, A., Han, H., Jeon, G., Chen, K.: A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy Build. 202, 109383 (2019). https://doi.org/10.1016/j.enbuild.2019.109383
Han, H.J., Jeon, Y.I., Lim, S.H., Kim, W.W., Chen, K.: New developments in illumination, heating and cooling technologies for energy-efficient buildings. Energy 35(6), 2647–2653 (2010). https://doi.org/10.1016/j.energy.2009.05.020
Diakaki, C., Grigoroudis, E., Kolokotsa, D.: Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energy Build. 40(9), 1747–1754 (2008). https://doi.org/10.1016/j.enbuild.2008.03.002
Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 49, 560–567 (2012). https://doi.org/10.1016/j.enbuild.2012.03.003
Baghoolizadeh, M., Rostamzadeh-Renani, M., Rostamzadeh-Renani, R., Toghraie, D.: Multi-objective optimization of Venetian blinds in office buildings to reduce electricity consumption and improve visual and thermal comfort by NSGA-II. Energy Build. 278, 112639 (2023). https://doi.org/10.1016/j.enbuild.2022.112639
Trčka, M., Hensen, J.L.M.: Overview of HVAC system simulation. Autom. Constr. 19(2), 93–99 (2010). https://doi.org/10.1016/j.autcon.2009.11.019
Mao, J., Grammenos, R., Karagiannis, K.: Data analysis and interpretable machine learning for HVAC predictive control: a case-study based implementation. Sci. Technol. Built. Environ. 29(7), 698–718 (2023). https://doi.org/10.1080/23744731.2023.2239081
Behzadi Hamooleh, M., Torabi, A., Baghoolizadeh, M.: Multi-objective optimization of energy and thermal comfort using insulation and phase change materials in residential buildings. Build. Environ. (2024). https://doi.org/10.1016/j.buildenv.2024.111774
Fabrizio, E., Corgnati, S.P., Causone, F., Filippi, M.: Numerical comparison between energy and comfort performances of radiant heating and cooling systems versus air systems. HVAC&R Res. 18(4), 692–708 (2012). https://doi.org/10.1080/10789669.2011.578700
Elkhoukhi, H., Naitmalek, Y., Berouine, A., Bakhouya, M., Elouadghiri, D., Essaaidi, M.: Towards a real-time occupancy detection approach for smart buildings. Procedia Comput. Sci. 134, 114–120 (2018). https://doi.org/10.1016/j.procs.2018.07.151
Png, E., Srinivasan, S., Bekiroglu, K., Chaoyang, J., Su, R., Poolla, K.: An internet of things upgrade for smart and scalable heating, ventilation and air-conditioning control in commercial buildings. Appl. Energy 239, 408–424 (2019). https://doi.org/10.1016/j.apenergy.2019.01.229
Baghoolizadeh, M., Rostamzadeh-Renani, M., Dehkordi, S.A.H.H., Rostamzadeh-Renani, R., Toghraie, D.: A prediction model for CO2 concentration and multi-objective optimization of CO2 concentration and annual electricity consumption cost in residential buildings using ANN and GA. J. Clean. Prod. (2022). https://doi.org/10.1016/j.jclepro.2022.134753
Blom, I., Itard, L., Meijer, A.: Environmental impact of building-related and user-related energy consumption in dwellings. Build. Environ. 46(8), 1657–1669 (2011). https://doi.org/10.1016/j.buildenv.2011.02.002
Bayraktar, M.E., Owens, C.R.: LEED implementation guide for construction practitioners. J. Arch. Eng. 16(3), 85–93 (2010). https://doi.org/10.1061/(asce)ae.1943-5568.0000013
Baghoolizadeh, M., Nadooshan, A.A., Raisi, A., Malekshah, E.H.: The effect of photovoltaic shading with ideal tilt angle on the energy cost optimization of a building model in European cities. Energy Sustain. Dev. 71, 505–516 (2022). https://doi.org/10.1016/j.esd.2022.10.016
Ntakolia, C., Anagnostis, A., Moustakidis, S., Karcanias, N.: Machine learning applied on the district heating and cooling sector: a review. Energy Syst. 13(1), 1–30 (2022). https://doi.org/10.1007/s12667-020-00405-9
Baghoolizadeh, M., et al.: Occupant’s thermal comfort augmentation and thermal load reduction in a typical residential building using genetic algorithm. Case Stud. Therm. Eng. (2024). https://doi.org/10.1016/j.csite.2024.104491
Baghoolizadeh, M., Nadooshan, A.A., Dehkordi, S.A.H.H., Rostamzadeh-Renani, M., Rostamzadeh-Renani, R., Afrand, M.: Multi-objective optimization of annual electricity consumption and annual electricity production of a residential building using photovoltaic shadings. Int. J. Energy Res. 46(15), 21172–21216 (2022). https://doi.org/10.1002/er.8401
Catalina, T., Virgone, J., Blanco, E.: Development and validation of regression models to predict monthly heating demand for residential buildings. Energy Build. 40(10), 1825–1832 (2008). https://doi.org/10.1016/j.enbuild.2008.04.001
Zhang, J., Haghighat, F.: Development of Artificial Neural Network based heat convection algorithm for thermal simulation of large rectangular cross-sectional area Earth-to-Air Heat Exchangers. Energy Build. 42(4), 435–440 (2010). https://doi.org/10.1016/j.enbuild.2009.10.011
Hou, Z., Lian, Z., Yao, Y., Yuan, X.: Cooling load prediction based on the combination of rough set theory and support vector machine. HVAC R Res. 12(2), 337–352 (2006). https://doi.org/10.1080/10789669.2006.10391182
Li, Q., Meng, Q., Cai, J., Yoshino, H., Mochida, A.: Applying support vector machine to predict hourly cooling load in the building. Appl. Energy 86(10), 2249–2256 (2009). https://doi.org/10.1016/j.apenergy.2008.11.035
Lu, C., Li, S., Reddy Penaka, S., Olofsson, T.: Automated machine learning-based framework of heating and cooling load prediction for quick residential building design. Energy (2023). https://doi.org/10.1016/j.energy.2023.127334
Bashir, M.B., Alotaib, A.A.: Smart buildings cooling and heating load forecasting models: review. Int. J. Comput. Sci. Netw. Secur. 20(12), 79–94 (2020). https://doi.org/10.22937/IJCSNS.2020.20.12.9
Wu, X., et al.: Intelligent optimization framework of near zero energy consumption building performance based on a hybrid machine learning algorithm. Renew. Sustain. Energy Rev. (2022). https://doi.org/10.1016/j.rser.2022.112703
Roy, S.S., Samui, P., Nagtode, I., Jain, H., Shivaramakrishnan, V., Mohammadi-ivatloo, B.: Forecasting heating and cooling loads of buildings: a comparative performance analysis. J. Ambient. Intell. Hum. Comput. 11(3), 1253–1264 (2020). https://doi.org/10.1007/s12652-019-01317-y
Ciulla, G., D’Amico, A.: Building energy performance forecasting: a multiple linear regression approach. Appl. Energy 253, 113500 (2019)
Fisk, W.J.: Health and productivity gains from better indoor environments and their relationship with building energy efficiency. Annu. Rev. Energy Env. 25, 537–566 (2000). https://doi.org/10.1146/annurev.energy.25.1.537
Alade, K.T., Lawal, A.F., Akinyele, D.: Smart materials and technologies for next generation energy-efficient buildings. In: Special Issue on the Foundational Support Systems, IEEE Smart Grid Resource Center (2017)
Pham, A.-D., Ngo, N.-T., Ha Truong, T.T., Huynh, N.-T., Truong, N.-S.: Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability. J. Clean. Prod. 260, 121082 (2020). https://doi.org/10.1016/j.jclepro.2020.121082
Dong, B., Cao, C., Lee, S.E.: Applying support vector machines to predict building energy consumption in tropical region. Energy Build. 37(5), 545–553 (2005)
de Oliveira, A.V., Dazzi, M.C.S., da Fernandes, A.M.R., Dazzi, R.L.S., Ferreira, P., Leithardt, V.R.Q.: Decision support using machine learning indication for financial investment. Fut. Internet 14(11), 304 (2022)
Laurensia, Y., Young, J.C., Suryadibrata, A.: Early detection of diabetic retinopathy cases using pre-trained EfficientNet and XGBoost. Int. J. Adv. Soft Comput. Appl. 12(3), 101–111 (2020)
Kaytez, F., Taplamacioglu, M.C., Cam, E., Hardalac, F.: Forecasting electricity consumption: a comparison of regression analysis, neural networks and least squares support vector machines. Int. J. Electr. Power Energy Syst. 67, 431–438 (2015)
Bui, X.N., Moayedi, H., Rashid, A.S.A.: Developing a predictive method based on optimized M5Rules–GA predicting heating load of an energy-efficient building system. Eng. Comput. 36(3), 931–940 (2020). https://doi.org/10.1007/s00366-019-00739-8
Mohamed, N., Al-Jaroodi, J., Lazarova-Molnar, S.: Leveraging the capabilities of industry 4.0 for improving energy efficiency in smart factories. IEEE Access 7, 18008–18020 (2019)
Loche, I., de Souza, C.B., Spaeth, A.B., Neves, L.O.: Decision-making pathways to daylight efficiency for office buildings with balconies in the tropics. J. Build. Eng. (2021). https://doi.org/10.1016/j.jobe.2021.102596
Gercek, M., DurmuşArsan, Z.: Energy and environmental performance based decision support process for early design stages of residential buildings under climate change. Sustain. Cities Soc. (2019). https://doi.org/10.1016/j.scs.2019.101580
Yao, J., Zhong, J., Yang, N.: Indoor air quality test and air distribution CFD simulation in hospital consulting room. Int. J. Low-Carbon Technol. 17, 33–37 (2022). https://doi.org/10.1093/ijlct/ctab084
Li, J., Xu, W., Cui, P., Qiao, B., Zhao, C., Wu, S.: Research on a systematical design method for nearly zero-energy buildings. Sustainability (Switzerland) (2019). https://doi.org/10.3390/su11247032
Nocera, F., LoFaro, A., Costanzo, V., Raciti, C.: Daylight performance of classrooms in a mediterranean school heritage building. Sustainability (Switzerland) (2018). https://doi.org/10.3390/su10103705
Tam, C., Zhao, Y., Liao, Z., Zhao, L.: Mitigation strategies for overheating and high carbon dioxide concentration within institutional buildings: a case study in Toronto, Canada. Buildings (2020). https://doi.org/10.3390/BUILDINGS10070124
Futrell, B.J., Ozelkan, E.C., Brentrup, D.: Bi-objective optimization of building enclosure design for thermal and lighting performance. Build. Environ. 92, 591–602 (2015). https://doi.org/10.1016/j.buildenv.2015.03.039
García Kerdan, I., Raslan, R., Ruyssevelt, P.: An exergy-based multi-objective optimisation model for energy retrofit strategies in non-domestic buildings. Energy 117, 506–522 (2016). https://doi.org/10.1016/j.energy.2016.06.041
Lu, S., Lin, B., Wang, C.: Investigation on the potential of improving daylight efficiency of office buildings by curved facade optimization. Build. Simul. 13(2), 287–303 (2020). https://doi.org/10.1007/s12273-019-0586-5
Vering, C., Wüllhorst, F., Mehrfeld, P., Müller, D.: Towards an integrated design of heat pump systems: application of process intensification using two-stage optimization. Energy Convers. Manag. (2021). https://doi.org/10.1016/j.enconman.2021.114888
Wang, X., Xu, Y., Bao, Z., Li, W., Liu, F., Jiang, Y.: Operation optimization of a solar hybrid CCHP system for adaptation to climate change. Energy Convers. Manag. (2020). https://doi.org/10.1016/j.enconman.2020.113010
Aftab, M., Chen, C., Chau, C.K., Rahwan, T.: Automatic HVAC control with real-time occupancy recognition and simulation-guided model predictive control in low-cost embedded system. Energy Build. 154, 141–156 (2017). https://doi.org/10.1016/j.enbuild.2017.07.077
Fan, C., Xiao, F.: Mining big building operational data for improving building energy efficiency: a case study. Build. Serv. Eng. Res. Technol. 39(1), 117–128 (2018). https://doi.org/10.1177/0143624417704977
Qiu, S., Li, Z., Li, Z., Zhang, X.: Model-free optimal chiller loading method based on Q-learning. Sci Technol Built Environ 26(8), 1100–1116 (2020). https://doi.org/10.1080/23744731.2020.1757328
Zhuang, C., Wang, S., Shan, K.: A risk-based robust optimal chiller sequencing control strategy for energy-efficient operation considering measurement uncertainties. Appl. Energy (2020). https://doi.org/10.1016/j.apenergy.2020.115983
Li, B., Wu, B., Peng, Y., Cai, W.: Tube-based robust model predictive control of multi-zone demand-controlled ventilation systems for energy saving and indoor air quality. Appl. Energy (2022). https://doi.org/10.1016/j.apenergy.2021.118297
Alimohammadi, H., et al.: Gray box time variant clogging behaviour and pressure drop prediction of the air filter in the HVAC system. E3S Web Confer. (2021). https://doi.org/10.1051/e3sconf/202124610002
Cheung, H., Wang, S.: Optimal design of data center cooling systems concerning multi-chiller system configuration and component selection for energy-efficient operation and maximized free-cooling. Renew. Energy 143, 1717–1731 (2019). https://doi.org/10.1016/j.renene.2019.05.127
May-Ostendorp, P., Henze, G.P., Corbin, C.D., Rajagopalan, B., Felsmann, C.: Model-predictive control of mixed-mode buildings with rule extraction. Build. Environ. 46(2), 428–437 (2011). https://doi.org/10.1016/j.buildenv.2010.08.004
Azzeh, M., Elsheikh, Y., Nassif, A.B., Angelis, L.: Examining the performance of kernel methods for software defect prediction based on support vector machine. Sci. Comput. Program. (2023). https://doi.org/10.1016/j.scico.2022.102916
Mustaqeem, M., Saqib, M.: Principal component based support vector machine (PC-SVM): a hybrid technique for software defect detection. Cluster Comput. 24(3), 2581–2595 (2021). https://doi.org/10.1007/s10586-021-03282-8
Yu, Z., Haghighat, F., Fung, B.C.M., Yoshino, H.: A decision tree method for building energy demand modeling. Energy Build. 42(10), 1637–1646 (2010)
Sakib, M., Siddiqui, T.: Anomaly detection of ECG time series signal using auto encoders neural network. In: 2023 7th International Conference On Computing, Communication, Control and Automation (ICCUBEA), pp. 1–7. IEEE (2023)
Fu, Q., Li, K., Chen, J., Wang, J., Lu, Y., Wang, Y.: Building energy consumption prediction using a deep-forest-based DQN method. Buildings 12(2), 131 (2022)
Sakib, M., Mustajab, S.: Enhanced multi-variate time series prediction through statistical-deep learning integration: the VAR-stacked LSTM model. SN Comput. Sci. 5(5), 573 (2024). https://doi.org/10.1007/s42979-024-02950-x
Tiberiu Catalina, V.I., Virgone, J.: Study on the impact of the building form on the energy consumption. In: 12th Conference of International Building Performance Simulation Association, Sydney, 2011, pp. 14–16
Pessenlehner, W., Ardeshir, M.: Building morphology, transparence and energy performance. Build. Simul. 2003, 1025–1032 (2003)
Anwar, K., Siddiqui, J., SaquibSohail, S.: Machine learning techniques for book recommendation: an overview. SSRN Electron. J. (2019). https://doi.org/10.2139/ssrn.3356349
Lu, C., Li, S., Reddy Penaka, S., Olofsson, T.: Automated machine learning-based framework of heating and cooling load prediction for quick residential building design. Energy 274, 127334 (2023). https://doi.org/10.1016/j.energy.2023.127334
Le, L.T., Nguyen, H., Zhou, J., Dou, J., Moayedi, H.: Estimating the heating load of buildings for smart city planning using a novel artificial intelligence technique PSO-XGBoost. Appl. Sci. (Switzerland) (2019). https://doi.org/10.3390/APP9132714
Mehdizadeh Khorrami, B., Soleimani, A., Pinnarelli, A., Brusco, G., Vizza, P.: Forecasting heating and cooling loads in residential buildings using machine learning: a comparative study of techniques and influential indicators. Asian J. Civil Eng. 25(2), 1163–1177 (2024). https://doi.org/10.1007/s42107-023-00834-8
Zheng, S., Lyu, Z., Foong, L.K.: Early prediction of cooling load in energy-efficient buildings through novel optimizer of shuffled complex evolution. Eng. Comput. 38(s1), 105–119 (2022). https://doi.org/10.1007/s00366-020-01140-6
Author information
Authors and Affiliations
Contributions
Authors' contributions Conceptualization, MS, and KA; data curation, SA and MS; formal analysis, KA, and SA; investigation,MS, and SA; methodology, SA, and KA.; resources,KA and MS; supervision KA; validation, KA and MS; visualization, MS; writing—original draft, MS and KA; writing—review and editing, KA, and SA.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Ethical approval and consent to participate
Not applicable.
Consent for publication
All authors have read and agreed to the published version of the manuscript.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A: Actual and Predicted Datasets
Appendix A: Actual and Predicted Datasets
Actual heating load | Predicted heating load | Actual cooling load | Predicted cooling load |
---|---|---|---|
16.47 | 16.28619039 | 16.9 | 17.75647556 |
13.17 | 13.5217462 | 16.39 | 16.58607045 |
32.82 | 32.87057262 | 32.78 | 32.75364 |
41.32 | 41.84365055 | 46.23 | 45.27278397 |
16.69 | 17.10118098 | 19.76 | 20.27642804 |
23.8 | 23.33938037 | 24.61 | 28.80313739 |
24.31 | 24.45379317 | 25.63 | 25.56744018 |
28.67 | 28.5577854 | 29.62 | 29.493621 |
19.52 | 17.97747944 | 22.72 | 21.48899657 |
28.07 | 28.23337872 | 34.14 | 33.49994759 |
18.46 | 18.52804671 | 21.53 | 21.50269444 |
33.08 | 32.76276034 | 34.11 | 34.36212416 |
29.79 | 29.76613866 | 29.92 | 29.95829823 |
10.37 | 10.43073144 | 13.44 | 13.3538268 |
17.69 | 18.13548493 | 20.82 | 20.43445393 |
36.95 | 37.13652094 | 36.87 | 37.08740502 |
36.64 | 36.36029541 | 37.01 | 36.20665215 |
12.3 | 11.94841249 | 15.24 | 14.38566563 |
14.7 | 14.37226551 | 16.77 | 16.51540506 |
32.38 | 33.1072694 | 33.62 | 34.44316779 |
28.67 | 28.35888858 | 32.43 | 31.04869531 |
41.4 | 40.74798733 | 45.29 | 44.43401204 |
11.7 | 11.51037752 | 13.88 | 14.61694506 |
36.86 | 36.17397028 | 34.25 | 41.00160141 |
15.37 | 14.99636252 | 19.18 | 18.83324263 |
35.89 | 36.08440617 | 43.3 | 39.76115679 |
36.57 | 36.35007852 | 35.39 | 36.23880695 |
28.91 | 28.51655225 | 29.64 | 28.15351274 |
17.5 | 17.2352218 | 21.13 | 20.71207467 |
13.99 | 14.6936826 | 14.35 | 15.10403603 |
10.42 | 10.24012956 | 13.39 | 13.46633921 |
12.3 | 12.43987192 | 15.44 | 15.10581576 |
16.93 | 16.75231377 | 20.03 | 20.23429812 |
26.84 | 26.34722411 | 30.17 | 29.90770027 |
35.94 | 35.45830208 | 43.33 | 42.80880889 |
28.18 | 28.19598947 | 30.18 | 30.20053105 |
32.72 | 32.74932699 | 33.78 | 34.67861621 |
36.9 | 36.73882758 | 34.43 | 34.82480754 |
36.06 | 35.82810014 | 34.94 | 36.47571454 |
10.7 | 10.53896433 | 13.87 | 14.0228912 |
28.15 | 27.9593248 | 30 | 30.44786486 |
12.32 | 11.97535639 | 14.92 | 14.34505844 |
6.37 | 6.137418949 | 11.29 | 11.52062456 |
31.84 | 31.67713036 | 31.6 | 31.22357879 |
6.79 | 6.700922139 | 12.05 | 11.33944917 |
6.4 | 6.136718786 | 11.67 | 11.43064739 |
7.1 | 7.777107951 | 12.14 | 13.43504329 |
10.8 | 10.72060708 | 14.28 | 14.01138462 |
28.66 | 29.0809019 | 34.73 | 35.39306762 |
32.46 | 32.47239949 | 35.62 | 36.18249663 |
34.95 | 35.22045737 | 35.04 | 37.26545668 |
12.93 | 13.33146142 | 15.83 | 16.8218438 |
13 | 13.20962699 | 15.87 | 16.08933772 |
40.12 | 39.71544024 | 37.26 | 38.81610334 |
12.27 | 12.13469188 | 14.97 | 14.25648447 |
15.32 | 15.23130539 | 19.42 | 19.55763975 |
12.45 | 12.08775421 | 15.1 | 14.84360544 |
24.6 | 25.21626816 | 29.31 | 32.26367189 |
40.68 | 39.86387541 | 40.36 | 38.43767899 |
35.99 | 36.70649095 | 36.07 | 36.97466879 |
14.37 | 13.74949982 | 16.54 | 15.97559979 |
16.54 | 16.27448052 | 16.88 | 17.53111044 |
13.02 | 13.19392765 | 16.06 | 15.86823798 |
22.89 | 23.93242384 | 28.88 | 29.18464323 |
28.61 | 28.66020835 | 30.2 | 30.93698915 |
37.1 | 36.63422555 | 35.29 | 34.29442435 |
35.45 | 36.80057306 | 41.86 | 38.08615735 |
11.68 | 11.72586081 | 13.9 | 15.13483247 |
13 | 12.87415387 | 14.47 | 14.25073064 |
12.03 | 11.7945522 | 13.79 | 14.26997565 |
29.14 | 28.83619141 | 29.58 | 29.87868614 |
32.84 | 32.3249674 | 32.88 | 33.56332841 |
12.47 | 12.73168907 | 15.14 | 15.88280286 |
24.23 | 24.25820112 | 25.02 | 24.28987356 |
31.64 | 30.92151647 | 36.86 | 34.66091757 |
12.16 | 12.07059206 | 15.18 | 14.74012765 |
29.06 | 28.98534056 | 33.84 | 34.73713983 |
24.7 | 25.1662462 | 28.77 | 29.1389681 |
32.26 | 32.27297389 | 33.37 | 33.36626711 |
19.34 | 19.20465521 | 23.49 | 22.23161053 |
24.38 | 24.3118361 | 25.91 | 25.88759823 |
40 | 39.61133392 | 36.26 | 43.38777685 |
10.68 | 10.5736248 | 14.3 | 14.01880548 |
13.91 | 14.11512477 | 14.89 | 15.11550432 |
11.6 | 11.32294241 | 13.7 | 14.27732773 |
12.43 | 14.03320409 | 15.59 | 16.44716163 |
26.46 | 26.41792363 | 27.4 | 27.60814666 |
36.13 | 36.15952396 | 37.58 | 37.47367654 |
37.12 | 37.04499275 | 35.28 | 35.66413434 |
17.37 | 17.21997634 | 21.08 | 20.34454539 |
15.18 | 15.37539329 | 19.34 | 19.2747709 |
25.38 | 25.90761017 | 26.72 | 25.42596326 |
11.13 | 11.2933534 | 14.61 | 13.63699882 |
12.95 | 13.30830389 | 15.95 | 16.12671845 |
36.59 | 35.90268327 | 36.44 | 36.92290393 |
12.86 | 12.82262697 | 16.17 | 16.25451621 |
25.36 | 26.15633189 | 32.04 | 31.56450128 |
28.31 | 28.54620742 | 34.15 | 34.48388864 |
10.66 | 10.63333403 | 13.67 | 14.00416638 |
10.71 | 10.48697358 | 13.8 | 13.69034109 |
40.78 | 40.99762932 | 39.55 | 40.07978288 |
28.37 | 28.28320667 | 29.28 | 30.03381219 |
10.36 | 10.08873302 | 13.43 | 13.33487996 |
29.83 | 29.62318806 | 29.82 | 29.34860697 |
29.43 | 29.39403003 | 28.38 | 31.55831962 |
16.76 | 15.93408613 | 17.36 | 17.81444694 |
22.58 | 22.76010255 | 28.51 | 32.63282474 |
16.44 | 16.7924671 | 17.1 | 17.89418346 |
14.08 | 14.36415297 | 17.02 | 16.99882534 |
12.41 | 12.3830025 | 15.28 | 14.98180706 |
33.12 | 32.68675788 | 34.17 | 34.25080542 |
32.31 | 32.42991856 | 29.69 | 28.28702979 |
24.63 | 24.43912764 | 26.37 | 25.86930268 |
14.72 | 14.70658256 | 18.1 | 17.95873153 |
11.69 | 12.17875378 | 14.76 | 15.00138023 |
14.66 | 14.37244019 | 17.37 | 16.8936385 |
11.2 | 11.17029246 | 14.73 | 14.14830561 |
10.39 | 10.14058949 | 13.6 | 13.47046415 |
12.12 | 12.54423284 | 14.97 | 15.24859049 |
19.68 | 18.95491229 | 29.6 | 29.24154283 |
29.06 | 28.55576551 | 29.34 | 32.85763178 |
11.16 | 11.54200283 | 14.39 | 13.93530359 |
23.93 | 25.79088643 | 29.4 | 30.97943807 |
14.6 | 15.12330781 | 15.3 | 15.32202501 |
29.68 | 29.65614861 | 29.44 | 30.37305798 |
17.88 | 18.32345028 | 21.4 | 20.81106177 |
14.53 | 14.57468434 | 16.9 | 17.20226656 |
35.48 | 35.46418321 | 41.26 | 37.06474264 |
24.23 | 24.24590749 | 25.72 | 26.72295452 |
39.97 | 40.35415864 | 40.85 | 41.17450537 |
15.55 | 15.75113012 | 21.33 | 21.58707707 |
32.31 | 33.8886278 | 34.05 | 34.64328682 |
14.6 | 14.66196643 | 15.14 | 15.24622246 |
13.97 | 14.19931172 | 16.08 | 16.1800813 |
14.4 | 14.23737555 | 17.27 | 17.09899635 |
19 | 18.65223988 | 22.25 | 21.54101322 |
32.06 | 32.1475139 | 35.71 | 33.29112141 |
42.96 | 42.01976699 | 39.56 | 40.48597091 |
14.5 | 14.16886589 | 17.03 | 16.9963832 |
18.88 | 19.25280487 | 22.07 | 22.00316099 |
10.75 | 10.46976637 | 14.27 | 14.14110341 |
40.6 | 39.77406174 | 39.85 | 39.52722598 |
28.55 | 28.51533674 | 29.59 | 30.28633529 |
31.53 | 31.51971014 | 37.19 | 36.93795136 |
35.73 | 35.20283443 | 39.92 | 37.70369141 |
11.42 | 11.49351271 | 14.75 | 14.02583521 |
10.07 | 10.19402617 | 13.21 | 13.67678601 |
28.09 | 27.24248544 | 34.33 | 34.38479155 |
35.01 | 35.46456281 | 33.14 | 35.48565922 |
38.98 | 39.31853341 | 45.97 | 40.57364681 |
36.66 | 36.64224347 | 35.92 | 36.3494153 |
29.34 | 28.87252591 | 33.37 | 32.94020481 |
29.54 | 28.98590271 | 33.98 | 33.32659197 |
12.17 | 12.31027809 | 15.2 | 15.60937045 |
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sakib, M., Ahmad, S., Anwar, K. et al. Optimizing support vector regression using grey wolf optimizer for enhancing energy efficiency and building prototype architecture. Cluster Comput 28, 60 (2025). https://doi.org/10.1007/s10586-024-04802-y
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10586-024-04802-y