Skip to main content
Log in

Considering baseline homophily when generating spatial social networks for agent-based modelling

  • SI: SNAMAS
  • Published:
Computational and Mathematical Organization Theory Aims and scope Submit manuscript

Abstract

Social networks have become an important part of agent-based models, and their structure may have remarkable impact on simulation results. We propose a simple and efficient but empirically based approach for spatial agent-based models which explicitly takes into account restrictions and opportunities imposed by effects of baseline homophily, i.e. the influence of local socio-demography on the composition of one’s social network. Furthermore, the algorithm considers the probability of links that depends on geographical distance between potential partners.

The resulting network reflects social settings and furthermore allows the modeller to influence network properties by adjusting agent type specific parameters. Especially the parameter for distance dependence and the probability of distant links allow for control of clustering and agent type distribution of personal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. This is true apart from the actor’ popularity in terms of network degree in the case of preferential attachment.

  2. Whereas for the SW generator removing local links dissolves the local lattice structure and may be desired, for the HDD generator it rather disturbs the principle of baseline homophily.

  3. The model is implemented in JAVA using the Repast Simphony framework (North et al. 2007). The code is available at OpenABM.org (search for “Homophily and Distance Depending Network Generation for Modelling Opinion Dynamics”) and can be run on any platform supporting JAVA. Data analysis requires the R framework (R Development Core Team 2010) and the igraph package (Csardi and Nepusz 2006).

  4. Pearson correlations: HDD: 0.86; IDD: 0.66; SW: 0.84.

References

  • Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512. doi:10.1126/science.286.5439.509

    Article  Google Scholar 

  • Ben-Zion Y, Cohen Y, Shnerb NM (2010) Modeling epidemics dynamics on heterogeneous networks. J Theor Biol 264(2):197–204. doi:10.1016/j.jtbi.2010.01.029

    Article  Google Scholar 

  • Boguna M, Pastor-Satorras R, Diaz-Guilera A, Arenas A (2004) Models of social networks based on social distance attachment. Phys Rev E 70(5, Part 2):056122. doi:10.1103/PhysRevE.70.056122

    Article  Google Scholar 

  • Carrasco JA, Miller EJ, Wellman B (2008) How far and with whom do people socialize? Empirical evidence about distance between social network members. Transp Res Rec 2076:114–122. doi:10.3141/2076-13

    Article  Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695. http://igraph.sf.net

  • Deffuant G (2006) Comparing extremism propagation patterns in continuous opinion models. J Artif Soc Soc Simul 9(3)

  • Edmonds B (2006) How are physical and social spaces related? Cognitive agents as the necessary glue. In: Billari F, Fent T, Prskawetz A, Scheffran J (eds) Agent-based computational modelling. Springer, Berlin

    Google Scholar 

  • Gilbert N (2008) Agent-based models. Quantitative applications in the social sciences, vol 153. Sage, Los Angeles

    Google Scholar 

  • Grabowski A (2009) Opinion formation in a social network: the role of human activity. Phys A, Stat Mech Appl 388(6):961–966. doi:10.1016/j.physa.2008.11.036

    Article  Google Scholar 

  • Hamill L, Gilbert N (2009) Social circles: a simple structure for agent-based social network models. J Artif Soc Soc Simul 12(2):3

    Google Scholar 

  • Janssen M, Jager W (2002) Stimulating diffusion of green products—co-evolution between firms and consumers. J Evol Econ 12(3):283–306

    Article  Google Scholar 

  • Jiang LL, Hua DY, Zhu JF, Wang BH, Zhou T (2008) Opinion dynamics on directed small-world networks. Eur Phys J B 65(2):251–255. doi:10.1140/epjb/e2008-00342-3

    Article  Google Scholar 

  • Lambiotte R, Blondel VD, de Kerchove C, Huens E, Prieur C, Smoreda Z, Van Dooren P (2008) Geographical dispersal of mobile communication networks. Phys A, Stat Mech Appl 387(21):5317–5325. doi:10.1016/j.physa.2008.05.014

    Article  Google Scholar 

  • Latane B, Liu JH, Nowak A, Bonevento M, Zheng L (1995) Distance matters: physical space and social impact. Pers Soc Psychol Bull 21(8):795–805. doi:10.1177/0146167295218002

    Article  Google Scholar 

  • Lazer D, Friedman A (2007) The network structure of exploration and exploitation. Adm Sci Q 52(4):667–694

    Article  Google Scholar 

  • McPherson M, Smith-Lovin L, Cook J (2001) Birds of a feather: homophily in social networks. Annu Rev Sociol 27:415–444

    Article  Google Scholar 

  • Newman M (2003) Mixing patterns in networks. Phys Rev E 67(2, Part 2):026126. doi:10.1103/PhysRevE.67.026126

    Article  Google Scholar 

  • North M, Howe T, Collier N, Vos J (2007) Declarative model assembly infrastructure for verification and validation. In: Takahashi S, Sallach D, Rouchier J (eds) Advancing social simulation: the First World Congress. Springer, Heidelberg

    Google Scholar 

  • Onnela JP, Arbesman S, Gonzalez MC, Barabasi AL, Christakis NA (2011) Geographic constraints on social network groups. PLoS ONE 6(4):e16939. doi:10.1371/journal.pone.0016939

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/

  • Ronald N, Arentze T, Timmermans H (2011) Modeling social interactions between individuals for joint activity scheduling. Transp Res, Part B, Methodol. doi:10.1016/j.trb.2011.10.003

    Google Scholar 

  • Simmel G (1902) The number of members as determining the sociological form of the group. Am J Sociol 8(1):1–46

    Article  Google Scholar 

  • Soboll A, Elbers M, Barthel R, Schmude J, Ernst A, Ziller R (2011) Integrated regional modelling and scenario development to evaluate future water demand under global change conditions. Mitig Adapt Strategies Glob Change 16(4):477–498. doi:10.1007/s11027-010-9274-6

    Article  Google Scholar 

  • Spellerberg A (1996) Soziale Differenzierung durch Lebensstile. Wissenschaftszentrum Berlin für Sozialforschung, Abteilung: Sozialstruktur und Sozialberichterstattung, Berlin

    Google Scholar 

  • Toroczkai Z, Guclu H (2007) Proximity networks and epidemics. Phys A, Stat Mech Appl 378(1):68–75. doi:10.1016/j.physa.2006.11.088

    Article  Google Scholar 

  • Valente T (2010) Social networks and health: models, methods, and applications, 1st edn. Oxford University Press, London

    Book  Google Scholar 

  • van den Berg P, Arentze TA, Timmermans HJP (2009) Size and composition of ego-centered social networks and their effect on geographic distance and contact frequency. Transp Res Rec 2135:1–9. doi:10.3141/2135-01

    Article  Google Scholar 

  • van Eck P (2010) Social network structures in agent based modelling: finding an optimal structure based on survey data (or finding the network that does not exist). In: Ernst A, Kuhn S (eds) Proceedings of the 3rd World Congress on social simulation WCSS2010, Kassel, Germany

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

    Article  Google Scholar 

  • Wellman B (1996) Are personal communities local? A Dumptarian reconsideration. Soc Netw 18(4):347–354

    Article  Google Scholar 

  • Wong SS (2008) Judgment about knowledge importance: the roles of social referents and network structure. Hum Relat 61(11):1565–1591. doi:10.1177/00018726708096638

    Article  Google Scholar 

Download references

Acknowledgements

The research project this work is part of (Klimzug Nordhessen) is funded by the German Federal Ministry of Education and Research (BMBF, support code 01LR0809A). We would like to thank anonymous reviewers for their valuable comments that helped a lot to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Holzhauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holzhauer, S., Krebs, F. & Ernst, A. Considering baseline homophily when generating spatial social networks for agent-based modelling. Comput Math Organ Theory 19, 128–150 (2013). https://doi.org/10.1007/s10588-012-9145-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10588-012-9145-7

Keywords

Navigation