Skip to main content

Advertisement

Log in

A fuzzy approach to a municipality grouping model towards creation of synergies

  • Manuscript
  • Published:
Computational and Mathematical Organization Theory Aims and scope Submit manuscript

Abstract

In recent years, a trend for accelerating the economic, social and environmental development of cities through associations, organization and creation of synergies has been identified. Our investigation applies a grouping model in order to identify municipalities that could create optimal synergies towards the construction of competitive advantages. In order to achieve this task, we use tools of Fuzzy Logic to evaluate subjective and qualitative characteristic elements of different municipalities under Galois’ group theory. Results conclude on 32 different groups ordered in 7 different levels, relating 12 municipalities of a specific region according to 8 competitive variables. This work seeks to shed light in the conformation of groups under uncertain conditions and the deep examination of the characteristic competitive elements in a specific region for further policy and decision-making processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Retrieved from Keropyan and Gil-Lafuente (2013)

Fig. 2

Source: Self-elaborated

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alfaro V, Gil-Lafuente A (2012) New methodological structure for the development of creative cities: the case of morelia-michoacán méxico. soft computing in management and business economics. Springer, Berlin Heidelberg, pp 195–205

    Google Scholar 

  • Alfaro V, Gil-Lafuente A, Alfaro G (2014) Methodological structure for the aggregation of municipalities under uncertain conditions. Inceptum Revista de Investigación en Ciencias de la Administración 7(13):215–228

    Google Scholar 

  • Artin E (1998) Galois theory. Dover, New York

    Google Scholar 

  • Begg I (1999) Cities and competitiveness. Urban stud 36(5–6):795–809

    Article  Google Scholar 

  • Bellman E, Zadeh L (1970) Decision-making in a fuzzy environment. Manag Sci 17(4):B-141

    Article  Google Scholar 

  • Budd L, Hirmis A (2004) Conceptual framework for regional competitiveness. Reg Stud 38(9):1015–1028

    Article  Google Scholar 

  • Caragliu A, Del Bo C, Nijkamp P (2011) Smart cities in Europe. J Urban Technol 18(2):65–82

    Article  Google Scholar 

  • Chapain C, Cooke P, De Propris L, MacNeill S, Mateos-Garcia J (2010) Creative clusters and innovation. http://www.nesta.org.uk/publications/creative-clusters-and-innovation-report#sthash.Zby2xjgh.dpuf. Accessed 7 September 2014

  • Chen C (2001) A fuzzy approach to select the location of the distribution center. Fuzzy Sets Syst 118(1):65–73

    Article  Google Scholar 

  • Compete Network (2010) Messages for Competitive European Cities. https://www.ljmu.ac.uk/EIUA/EIUA_Docs/COMPETE_Final_Report.pdf/. Last Accessed 21 June 2014

  • Creative Metropoles (2010) How to support creative industries. http://www.creativemetropoles.eu/. Last Accessed 7 December 2013

  • Delgado M, Herrera F, Herrera-Viedma E, Martínez L (1998) Combining numerical and linguistic information in group decision making. Inf Sci 107(1):177–194

    Article  Google Scholar 

  • Denecke K, Ernâe M, Wismath S (2004) Galois connections and applications, vol 565. Springer, Newyork

    Book  Google Scholar 

  • Edwards S, Tardieu O (1984). Galois theory

  • Florida R (2008) Who’s your city?. Basic Books, USA

    Google Scholar 

  • Gardiner B, Martin R, Tyler P (2006) Competitiveness, productivity and economic growth across the European regions. Reg Compet 30:55

    Google Scholar 

  • Gil-Aluja J (1999) Elements for a theory of decision in uncertainty. Kluwer Academic Publishers, London

    Book  Google Scholar 

  • Gil-Aluja J, Gil-Lafuente A, Klimova A (2009) M-attributes algorithm for the selection of a company to be affected by a public offering. Inter J Uncertain Fuzziness Knowl-Based Syst 17(03):333–343

    Article  Google Scholar 

  • Gil-Aluja J, Gil-Lafuente A, Merigó J (2011) Using homogeneous groupings in portfolio management. Expert Syst Appl 38(9):10950–10958

    Article  Google Scholar 

  • Gil-Lafuente J (2002) Algoritmos para la excelencia: claves para el éxito en la gestión deportiva. Milladoiro, Spain

    Google Scholar 

  • Gil-Lafuente A, Paula L (2013) Algorithm applied in the identification of stakeholders. Kybernetes 42(5):674–685

    Article  Google Scholar 

  • Hansen T, Winther L (2011) Innovation, regional development and relations between high-and low-tech industries. European Urban Reg Stud 18(3):321–339

    Article  Google Scholar 

  • Herrera F, Herrera-Viedma E (2000) Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets Syst 115(1):67–82

    Article  Google Scholar 

  • INAFED (2010) Encyclopedia of the Municipalities of Mexico. http://www.e-local.gob.mx/wb/ELOCALNew/municipios Last Accessed 21 August 2013

  • INEGI (2014) México en Cifras. http://www3.inegi.org.mx/sistemas/mexicocifras/default.aspx?e=16 Last Accessed 20 September 2014

  • Jiang Y, Fan Z, Ma J (2008) A method for group decision making with multi-granularity linguistic assessment information. Inf Sci 178(4):1098–1109

    Article  Google Scholar 

  • Kaufmann A, Gil-Aluja J (1988) Modelos para la investigación de los efectos olvidados. Milladoiro, Vigo (Spain)

    Google Scholar 

  • Keropyan A, Gil-Lafuente A (2013) A personal selection model using galois group theory. Kybernetes 42(5):711–719

    Article  Google Scholar 

  • Ketels C (2013) Recent research on competitiveness and clusters: what are the implications for regional policy? Cambridge J Regions, Econ Soc 6(2):269–284

    Article  Google Scholar 

  • Malecki E (2007) Cities and regions competing in the global economy: knowledge and local development policies. Environ Plan 25(5):638

    Article  Google Scholar 

  • Nation J (1985) Some varieties of semi distributive lattices, universal algebra and lattice theory. Comer S, Lecture Notes in Mathematics Vol. 1149. Springer. NewYork, NY

  • Parkinson M, Clark G, Hutchins M, Simmie J, Verdonk H (2004) Competitive European cities: where do the core cities stand?. Office of the Deputy Prime Minister, London

    Google Scholar 

  • Porter M (1996) What is strategy? Harvard Bus Rev 74(6):61–78

    Google Scholar 

  • Porter M (1998) Clusters and the new economics of competition. Business Econ 76(6):77–90

    Google Scholar 

  • Porter M (2000) Location, competition, and economic development: local clusters in a global economy. Econ Dev Q 14(1):15–34

    Article  Google Scholar 

  • Porter M (2003) The economic performance of regions. Reg Stud 37(6–7):545–546

    Google Scholar 

  • Ribeiro R (1996) Fuzzy multiple attribute decision making: a review and new preference elicitation techniques. Fuzzy Sets Syst 78(2):155–181

    Article  Google Scholar 

  • Rogerson R (1999) Quality of life and city competitiveness. Urban studies 36(5–6):969–985

    Article  Google Scholar 

  • Turok I (2004) Cities, regions and competitiveness. Reg Stud 38(9):1069–1083

    Article  Google Scholar 

  • UNDP (2014) Índice de Desarrollo Humano Municipal en México: nueva metodología. http://www.mx.undp.org Accessed 27 November 2014

  • Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  • Zadeh L (1997) Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst 90(2):111–127

    Article  Google Scholar 

Download references

Acknowledgments

The first author expresses his gratitude to the Mexican Council of Science and Technology (CONACYT) for the financial support given to this research project with the scholarship no. 381436 to graduate studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor G. Alfaro-García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfaro-García, V.G., Gil-Lafuente, A.M. & Alfaro Calderón, G.G. A fuzzy approach to a municipality grouping model towards creation of synergies. Comput Math Organ Theory 23, 391–408 (2017). https://doi.org/10.1007/s10588-016-9233-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10588-016-9233-1

Keywords