Skip to main content

Advertisement

Log in

A comprehensive approach in designing a sustainable closed-loop supply chain network using cross-docking operations

  • Manuscript
  • Published:
Computational and Mathematical Organization Theory Aims and scope Submit manuscript

Abstract

In today’s competitive world, it is unavoidable to provide a new efficient approach in the cycle of production and supplying. The problem of designing a supply chain network is included in strategic decisions in this area, and short-term changing the structure and configuration of logistics networks is almost impossible due to assigned much time and cost. This paper develops a comprehensive model for designing a sustainable closed-loop supply chain network based on economic, environmental and social requirements, both with applying cross-docking operations in the mentioned network. Utilizing the cross-docking system—as a new strategy of supply chain—along with simultaneous considering the above triple dimensions—economic, environmental and social requirements—in a comprehensive and sustainable approach offers a novel research scope in the wide range of problems related to supply chain network design, and in this regards, helps organizations improve their competitive advantage in different industries. For these reasons, in this study, a multi-objective mixed-integer linear programming model is developed, and in order to solve this NP-hard problem, a cuckoo optimization algorithm is utilized—as the first attempt in this area. Finally, to test the efficiency of the proposed metaheuristics, it is compared with other strong algorithms illustrating a quite well performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Acar K, Yalcin A, Yankov D (2012) Robust door assignment in less-than-truckload terminals. Comput Ind Eng 63(4):729–738

    Article  Google Scholar 

  • Alpan G, Ladier AL, Larbi R, Penz B (2011) Heuristic solutions for transshipment problems in a multiple door cross docking warehouse. Comput Ind Eng 61(2):402–408

    Article  Google Scholar 

  • Alvarez-Perez GA, González-Velarde JL, Fowler JW (2009) Crossdocking—just in time scheduling: an alternative solution approach. J Oper Res Soci 60(4):554–564

    Article  Google Scholar 

  • Arabani AB, Zandieh M, Ghomi SF (2012) A cross-docking scheduling problem with sub-population multi-objective algorithms. Int J Adv Manuf Technol 58(5–8):741–761

    Article  Google Scholar 

  • Aras N, Aksen D, Tanuğur AG (2008) Locating collection centers for incentive-dependent returns under a pick-up policy with capacitated vehicles. Eur J Oper Res 191(3):1223–1240

    Article  Google Scholar 

  • Bartholdi JJ III, Gue KR (2000) Reducing labor costs in an LTL crossdocking terminal. Oper Res 48(6):823–832

    Article  Google Scholar 

  • Bartholdi JJ, Gue KR (2004) The best shape for a crossdock. Trans Sci 38(2):235–244

    Article  Google Scholar 

  • Bender T, Hennes H, Kalcsics J, Melo MT, Nickel S (2002) Location software and interface with GIS and supply chain management. Facility location: applications and theory. Springer, Berlin, pp 233–274

    Google Scholar 

  • Boysen N (2010) Truck scheduling at zero-inventory cross docking terminals. Comput Oper Res 37(1):32–41

    Article  Google Scholar 

  • Boysen N, Fliedner M (2010) Cross dock scheduling: classification, literature review and research agenda. Omega 38(6):413–422

    Article  Google Scholar 

  • Boysen N, Fliedner M, Scholl A (2010) Scheduling inbound and outbound trucks at cross docking terminals. OR Spectrum 32(1):135–161

    Article  Google Scholar 

  • Boysen N, Briskorn D, Tschöke M (2013) Truck scheduling in cross-docking terminals with fixed outbound departures. OR Spectrum 35(2):479–504

    Article  Google Scholar 

  • Briskorn D, Choi BC, Lee K, Leung J, Pinedo M (2010) Complexity of single machine scheduling subject to nonnegative inventory constraints. Eur J Oper Res 207(2):605–619

    Article  Google Scholar 

  • Cardoso SR, Barbosa-Póvoa APF, Relvas S (2013) Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty. Eur J Oper Res 226(3):436–451

    Article  Google Scholar 

  • Carlo HJ, Bozer YA (2011) Analysis of optimum shape and door assignment problems in rectangular unit-load crossdocks. Int J Logist Res Appl 14(3):149–163

    Article  Google Scholar 

  • Chaabane A, Ramudhin A, Paquet M (2012) Design of sustainable supply chains under the emission trading scheme. Int J Prod Econ 135(1):37–49

    Article  Google Scholar 

  • Chen F, Lee CY (2009) Minimizing the makespan in a two-machine cross-docking flow shop problem. Eur J Oper Res 193(1):59–72

    Article  Google Scholar 

  • Chen F, Song K (2009) Minimizing makespan in two-stage hybrid cross docking scheduling problem. Comput Oper Res 36(6):2066–2073

    Article  Google Scholar 

  • Chmielewski A, Naujoks B, Janas M, Clausen U (2009) Optimizing the door assignment in LTL-terminals. Trans Sci 43(2):198–210

    Article  Google Scholar 

  • Chopra S, Meindl P (2007) Supply chain management. Strategy, planning & operation. Gabler, Wiesbaden, pp 265–275

  • Cohen Y, Keren B (2009) Trailer to door assignment in a synchronous cross-dock operation. Int J Logist Syst Manag 5(5):574–590

    Article  Google Scholar 

  • Cruz-Rivera R, Ertel J (2009) Reverse logistics network design for the collection of end-of-life vehicles in Mexico. Eur J Oper Res 196(3):930–939

    Article  Google Scholar 

  • Dasci A, Verter V (2001) A continuous model for production–distribution system design. Eur J Oper Res 129(2):287–298

    Article  Google Scholar 

  • Dehghanian F, Mansour S (2009) Designing sustainable recovery network of end-of-life products using genetic algorithm. Resour Conserv Recycl 53(10):559–570

    Article  Google Scholar 

  • Dekker R, Fleischmann M, Inderfurth K, van Wassenhove LN (Eds) (2013). Reverse logistics: quantitative models for closed-loop supply chains. Springer Science & Business Media, Berlin

  • Demirel NÖ, Gökçen H (2008) A mixed integer programming model for remanufacturing in reverse logistics environment. Int J Adv Manuf Technol 39(11–12):1197–1206

    Article  Google Scholar 

  • Devika K, Jafarian A, Nourbakhsh V (2014) Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques. Eur J Oper Res 235(3):594–615

    Article  Google Scholar 

  • Elhedhli S, Merrick R (2012) Green supply chain network design to reduce carbon emissions. Transp Res Part D 17(5):370–379

    Article  Google Scholar 

  • Faccio M, Persona A, Sgarbossa F, Zanin G (2014) Sustainable SC through the complete reprocessing of end-of-life products by manufacturers: a traditional versus social responsibility company perspective. Eur J Oper Res 233(2):359–373

    Article  Google Scholar 

  • Fleischmann M, Beullens P, Bloemhof-Ruwaard JM, Van Wassenhove LN (2001) The impact of product recovery on logistics network design. Prod Oper Manag 10(2):156–173

    Article  Google Scholar 

  • Fonseca MC, García-Sánchez Á, Ortega-Mier M, Saldanha-da-Gama F (2010) A stochastic bi-objective location model for strategic reverse logistics. Top 18(1):158–184

    Article  Google Scholar 

  • Forouharfard S, Zandieh M (2010) An imperialist competitive algorithm to schedule of receiving and shipping trucks in cross-docking systems. Int J Adv Manuf Technol 51(9–12):1179–1193

    Article  Google Scholar 

  • Gallego RC, Cueto EP (2009) Forecasting the returns in reusable containers closed-loop supply chains. A case in the LPG industry. In: XIII Congreso de Ingeniería de Organización: Barcelona, 2–4 de Septiembre de, pp 311–320

  • Georgiadis MC, Tsiakis P, Longinidis P, Sofioglou MK (2011) Optimal design of supply chain networks under uncertain transient demand variations. Omega 39(3):254–272

    Article  Google Scholar 

  • Jayaraman V, Pirkul H (2001) Planning and coordination of production and distribution facilities for multiple commodities. Eur J Oper Res 133(2):394–408

    Article  Google Scholar 

  • Jayaraman V, Ross A (2003) A simulated annealing methodology to distribution network design and management. Eur J Oper Res 144(3):629–645

    Article  Google Scholar 

  • Joo CM, Kim BS (2013) Scheduling compound trucks in multi-door cross-docking terminals. Int J Adv Manuf Technol 64(5–8):977–988

    Article  Google Scholar 

  • Kannan D, Diabat A, Alrefaei M, Govindan K, Yong G (2012) A carbon footprint based reverse logistics network design model. Resour Conserv Recycl 67:75–79

    Article  Google Scholar 

  • Ko HJ, Evans GW (2007) A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs. Comput Oper Res 34(2):346–366

    Article  Google Scholar 

  • Konur D, Golias MM (2013) Analysis of different approaches to cross-dock truck scheduling with truck arrival time uncertainty. Comput Ind Eng 65(4):663–672

    Article  Google Scholar 

  • Krikke H (2010) Opportunistic versus life-cycle-oriented decision making in multi-loop recovery: an eco-eco study on disposed vehicles. Int J Life Cycle Assess 15(8):757–768

    Article  Google Scholar 

  • Krikke HR, Kooi EJ, Schuur PC (1999) Network design in reverse logistics: a quantitative model. In New trends in distribution logistics. Springer, Berlin, pp 45–61

  • Larbi R, Alpan G, Baptiste P, Penz B (2011) Scheduling cross docking operations under full, partial and no information on inbound arrivals. Comput Oper Res 38(6):889–900

    Article  Google Scholar 

  • Li Y, Lim A, Rodrigues B (2004) Crossdocking—JIT scheduling with time windows. J Oper Res Soc 55(12):1342–1351

    Article  Google Scholar 

  • Listeş O, Dekker R (2005) A stochastic approach to a case study for product recovery network design. Eur J Oper Res 160(1):268–287

    Article  Google Scholar 

  • Lu Z, Bostel N (2007) A facility location model for logistics systems including reverse flows: The case of remanufacturing activities. Comput Oper Res 34(2):299–323

    Article  Google Scholar 

  • Luo G, Noble JS (2012) An integrated model for crossdock operations including staging. Int J Prod Res 50(9):2451–2464

    Article  Google Scholar 

  • Marin A, Pelegrín B (1998) The return plant location problem: Modelling and resolution. Eur J Oper Res 104(2):375–392

    Article  Google Scholar 

  • Mazhar MI, Kara S, Kaebernick H (2007) Remaining life estimation of used components in consumer products: life cycle data analysis by Weibull and artificial neural networks. J Oper Manag 25(6):1184–1193

    Article  Google Scholar 

  • McWilliams DL (2010) Iterative improvement to solve the parcel hub scheduling problem. Comput Ind Eng 59(1):136–144

    Article  Google Scholar 

  • McWilliams DL, McBride ME (2012) A beam search heuristics to solve the parcel hub scheduling problem. Comput Ind Eng 62(4):1080–1092

    Article  Google Scholar 

  • McWilliams DL, Stanfield PM, Geiger CD (2008) Minimizing the completion time of the transfer operations in a central parcel consolidation terminal with unequal-batch-size inbound trailers. Comput Ind Eng 54(4):709–720

    Article  Google Scholar 

  • Meixell MJ, Gargeya VB (2005) Global supply chain design: a literature review and critique. Trans Res Part E 41(6):531–550

    Article  Google Scholar 

  • Melo T, Nickel S, Saldanha-da-Gama F (2008) Network design decisions in supply chain planning. Fraunhofer-Institut für Techno-und Wirtschaftsmathematik, Fraunhofer (ITWM), Munich

    Google Scholar 

  • Miao Z, Lim A, Ma H (2009) Truck dock assignment problem with operational time constraint within crossdocks. Eur J Oper Res 192(1):105–115

    Article  Google Scholar 

  • Min H, Ko HJ (2008) The dynamic design of a reverse logistics network from the perspective of thirdparty logistics service providers. Int J Prod Econ 113(1):176–192

    Article  Google Scholar 

  • Min H, Ko HJ, Ko CS (2006) A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns. Omega 34(1):56–69

    Article  Google Scholar 

  • Miranda PA, Garrido RA (2004) Incorporating inventory control decisions into a strategic distribution network design model with stochastic demand. Transp Res Part E Logist Transp Rev 40(3):183–207

    Article  Google Scholar 

  • Mota B, Gomes MI, Carvalho A, Barbosa-Povoa AP (2014) Towards supply chain sustainability: economic, environmental and social design and planning. J Clean Prod 105:14–27

    Article  Google Scholar 

  • Oh Y, Hwang H, Cha CN, Lee S (2006) A dock-door assignment problem for the Korean mail distribution center. Comput Ind Eng 51(2):288–296

    Article  Google Scholar 

  • Pati RK, Vrat P, Kumar P (2010) Quantifying bullwhip effect in a closed loop supply chain. Opsearch 47(4):231–253

    Article  Google Scholar 

  • Pishvaee MS, Razmi J (2012) Environmental supply chain network design using multi-objective fuzzy mathematical programming. Appl Math Model 36(8):3433–3446

    Article  Google Scholar 

  • Pishvaee MS, Farahani RZ, Dullaert W (2010) A memetic algorithm for bi-objective integrated forward/reverse logistics network design. Comput Oper Res 37(6):1100–1112

    Article  Google Scholar 

  • Pishvaee MS, Rabbani M, Torabi SA (2011) A robust optimization approach to closed-loop supply chain network design under uncertainty. Appl Math Model 35(2):637–649

    Article  Google Scholar 

  • Pishvaee MS, Razmi J, Torabi SA (2012a) Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy Sets and Syst 206:1–20

    Article  Google Scholar 

  • Pishvaee MS, Torabi SA, Razmi J (2012b) Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty. Comput Ind Eng 62(2):624–632

    Article  Google Scholar 

  • Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput 11(8):5508–5518

    Article  Google Scholar 

  • Ramezani M, Kimiagari AM, Karimi B, Hejazi TH (2014) Closed-loop supply chain network design under a fuzzy environment. Knowl-Based Syst 59:108–120

    Article  Google Scholar 

  • Rogers DS, Tibben-Lembke RS (1998) Going backwards: reverse logistics practices and trends. University of Nevada, Reno. Center of Logistics Management. Reverse Logistics Executive Council

  • Rosales CR, Fry MJ, Radhakrishnan R (2009) Transfreight reduces costs and balances workload at Georgetown crossdock. Interfaces 39(4):316–328

    Article  Google Scholar 

  • Salema MIG, Póvoa APB, Novais AQ (2009) A strategic and tactical model for closed-loop supply chains. OR spectr 31(3):573–599

    Article  Google Scholar 

  • Shakeri M, Low MYH, Turner SJ, Lee EW (2012) A robust two-phase heuristic algorithm for the truck scheduling problem in a resource-constrained crossdock. Comput Oper Res 39(11):2564–2577

    Article  Google Scholar 

  • Shevtshenko E, Wang Y (2009) Decision support under uncertainties based on robust Bayesian networks in reverse logistics management. Int J Comput Appl Technol 36(3–4):247–258

    Article  Google Scholar 

  • Simchi-Levi E, Kaminsky P (1999) Designing and managing the supply chain: concepts, strategies, and cases. McGraw-Hill, New York

    Google Scholar 

  • Simchi-Levi D, Kaminsky P, Simchi-Levi E (2004) Managing the supply chain: the definitive guide for the business professional. McGraw-Hill Companies, New York

    Google Scholar 

  • Soleimani H, Kannan G (2015) A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks. Appl Math Model 39(14):3990–4012

    Article  Google Scholar 

  • Soleimani H, Seyyed-Esfahani M, Shirazi MA (2013a) Designing and planning a multi-echelon multi-period multi-product closed-loop supply chain utilizing genetic algorithm. Int J Adv Manuf Technol 68(1–4):917–931

    Article  Google Scholar 

  • Soleimani H, Seyyed-Esfahani M, Shirazi MA (2013b) A new multi-criteria scenario-based solution approach for stochastic forward/reverse supply chain network design. Ann Oper Res 242:399–421

    Article  Google Scholar 

  • Soltani R, Sadjadi SJ (2010) Scheduling trucks in cross-docking systems: a robust meta-heuristics approach. Trans Res Part E 46(5):650–666

    Article  Google Scholar 

  • Stadtler H, Kilger C (2000) Supply chain management and advanced planning. Springer, Berlin

    Book  Google Scholar 

  • Stephan K, Boysen N (2011) Vis-à-vis vs. mixed dock door assignment: a comparison of different cross dock layouts. Oper Manag Res 4(3–4):150–163

    Article  Google Scholar 

  • Syarif A, Yun Y, Gen M (2002) Study on multi-stage logistic chain network: a spanning treebased genetic algorithm approach. Comput Ind Eng 43(1–2):299–314

    Article  Google Scholar 

  • Tsiakis P, Papageorgiou LG (2008) Optimal production allocation and distribution supply chain networks. Int J Prod Econ 111(2):468–483

    Article  Google Scholar 

  • Tsui LY, Chang CH (1990) A microcomputer based decision support tool for assigning dock doors in freight yards. Comput Ind Eng 19(1):309–312

    Article  Google Scholar 

  • Tsui LY, Chang CH (1992) An optimal solution to a dock door assignment problem. Comput Ind Eng 23:1–4

    Article  Google Scholar 

  • Vahdani B, Zandieh M (2010) Scheduling trucks in cross-docking systems: robust meta-heuristics. Comput Ind Eng 58(1):12–24

    Article  Google Scholar 

  • Vahdani B, Soltani R, Zandieh M (2010) Scheduling the truck holdover recurrent dock cross-dock problem using robust meta-heuristics. Int J Adv Manuf Technol 46(5–8):769–783

    Article  Google Scholar 

  • Van Belle J, Valckenaers P, Berghe GV, Cattrysse D (2013) A tabu search approach to the truck scheduling problem with multiple docks and time windows. Comput Ind Eng 66(4):818–826

    Article  Google Scholar 

  • Vis IF, Roodbergen KJ (2011) Layout and control policies for cross docking operations. Comput Ind Eng 61(4):911–919

    Article  Google Scholar 

  • Wang JF, Regan A (2008) Real-time trailer scheduling for crossdock operations. Trans J 8:5–20

    Google Scholar 

  • Wang HF, Hsu HW (2010) A closed-loop logistic model with a spanning-tree based genetic algorithm. Comput Oper Res 37(2):376–389

    Article  Google Scholar 

  • Wang F, Lai X, Shi N (2011) A multi-objective optimization for green supply chain network design. Decis Support Syst 51(2):262–269

    Article  Google Scholar 

  • Yang XS (ed) (2013) Cuckoo search and firefly algorithm: theory and applications. Springer, Berlin, vol 516

  • Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: NaBIC 2009. World Congress on nature & biologically inspired computing. IEEE, pp 210–214

  • Yang XS, Deb S (2013) Multi-objective cuckoo search for design optimization. Comput Oper Res 40(6):1616–1624

    Article  Google Scholar 

  • Yeh WC (2005) A hybrid heuristic algorithm for the multistage supply chain network problem. The International Int J Adv Manuf Technol 26(5–6):675–685

    Article  Google Scholar 

  • Yu W, Egbelu PJ (2008) Scheduling of inbound and outbound trucks in cross docking systems with temporary storage. Eur J Oper Res 184(1):377–396

    Article  Google Scholar 

  • Yu VF, Sharma D, Murty KG (2008) Door allocations to origins and destinations at less-than-truckload trucking terminals. J Ind Syst Eng 2(1):1–15

    Google Scholar 

  • Zhang X, Pieter van Donk D, van der Vaart T (2011) Does ICT influence supply chain management and performance? A review of survey-based research. Int J Oper Prod Manag 31(11):1215–1247

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Rezaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, S., Kheirkhah, A. A comprehensive approach in designing a sustainable closed-loop supply chain network using cross-docking operations. Comput Math Organ Theory 24, 51–98 (2018). https://doi.org/10.1007/s10588-017-9247-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10588-017-9247-3

Keywords

Navigation