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Abstract
Although the performance of new product development (PD) is dependent on the 
structure and formation of design teams, effective configuration of the PD teams 
remains largely unexplored. According to social network research, teams are often 
organized in either closely connected or sparse structure. We conceptualize PD pro-
jects as collective problem-solving endeavors and develop a computational model of 
these projects where a number of designers conduct search over an NK(C) perfor-
mance landscape. We group the designers in teams with closely connected or sparse 
structure. We also consider various organizational integration capabilities (i.e., coor-
dinated operations, and common principles) as well as interaction networks among 
the teams (i.e., acyclical, cyclical, and modular). We use simulation and compare the 
design performance of teams with different configurations. Our results indicate that 
the extent by which organizations can effectively integrate design solutions deter-
mines the team structure and is likely to result in higher development performance. 
In addition, the design performance of strategies that employ both closely connected 
and sparse teams is contrasted with the strategies that use either of these structures. 
Regardless of the integration capabilities of the PD projects, strategies that simulta-
neously utilize both closely connected and sparse teams are likely to achieve higher 
development performance than strategies that only use teams with one particular 
structure.
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1 Introduction

Teams are essential for problem-solving and the generation of creative ideas in 
projects (Thompson 2011; Liang et al. 2010). In product development (PD) pro-
jects, the use of teams highly depends on product design features. While a small 
PD team may suffice for developing a simple and bounded product (Fujimoto 
1991; Eppinger et al. 1994), complex products—that are becoming rapidly evolv-
ing and ubiquitous—tend to use a large number of teams. For instance, over 250 
teams were recruited for developing Boeing 777 (Sabbagh 1996).

The structure of teams in a PD project is essential because it significantly 
influences not only the performance of the teams but also the overall performance 
of the project (Allen 1977; Guimera et al. 2005). Two common team structures 
in the literature are closely connected and sparse (Kilduff and Brass 2010). In 
the closely connected structure (i.e., closure network), a focal actor is surrounded 
by cohesive social connections, whereas, in a sparse structure (i.e., brokerage), 
an individual is surrounded by other members belonging to disconnected social 
groups (Coleman 1990; Burt 1992, 2005). Generally, each of these structures pro-
vides distinct performance advantages. Closely connected structures with strong 
ties are expected to be competent in generating ideas, and sparse networks with 
bridging ties facilitate the implementation of innovative ideas (Obstfeld 2005; 
Tiwana 2008). Also, in a closely connected structure, shared third parties (e.g., 
two engineers having a shared, third connection) create benefits such as induced 
commitment and trust (Uzzi 1997; Reagans and McEvily 2003), and sparse net-
works yield information advantage by providing diverse information (Burt 2004).

In the PD context, the formation of teams can be potentially challenging for 
PD managers due to the complexities of product architectures. First, a PD pro-
cess includes a multi-level process: the definition and decomposition of product 
subsystems, then the integration of the developed subsystems (Parraguez et  al. 
2015). Second, not all subsystems of a product architecture are of equal impor-
tance (Ulrich 1995; Baldwin et al. 2014). There are core subsystems of a product 
that are tightly coupled to other subsystems, whereas peripheral subsystems tend 
to possess only loose connections to other subsystems (Tushman and Peter 1998). 
We will discuss these three complexities in the next section.

Because of the challenges discussed above, understanding what team-forma-
tion strategy is the most effective is not an easy task for PD managers. Conse-
quently, if they implement an ineffective team-formation strategy, it not only 
results in a poor design but also wastes potential resources. Therefore, it is essen-
tial to understand the impacts of various team configuration strategies. However, 
despite that, the performance of PD projects is tied with the structure of teams 
and the complications that the formation of teams poses for PD managers; little 
research has been conducted on team-formation strategies in PD projects (Sosa 
and Marle 2013). We aim to fill out this gap by studying performance implica-
tions of team assembly strategies. In other words, we investigate the performance 
effects of adopting two team formations: closely connected teams that we refer to 
as communicative teams, and sparsely arranged teams that we refer to as diverse 
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teams. Therefore, we define our first research question as: Should PD managers 
build communicative teams or diverse teams?

In practice, managers of PD projects may consider mixed strategies where both 
communicative and diverse structures are employed; e.g., communicative teams 
develop a subset of subsystems, while the rest of the subsystems are developed 
by diverse teams. While empirical observations show that having both strong ties 
(that exist in communicative teams) and weak ties (that exist in diverse teams) are 
essential for creativity and innovation (Capaldo 2007; Tiwana 2008; Zhou et al. 
2009; Schultz and Schreyogg 2013), the choice of strategy to achieve maximum 
performance is unclear. Therefore, our second research question is: Do PD man-
agers arranging teams with a heterogeneous structure (i.e., both communicative 
and diverse structures) achieve higher performance than managers arranging 
teams with a uniform structure (i.e., communicative or diverse structure)?

In order to address these two questions, we develop an agent-based simulation 
model based on the well-studied NK landscape model. We focus on the structure 
of the teams and take into account the integration capability levels of PD pro-
jects, as well as the interaction patterns among the teams. We also consider two 
important features of PD projects: product architecture and complexity level of its 
design space. Our modeling work helps investigate the macro, firm-level perfor-
mance consequences of different team assembly strategies in PD projects.

The remainder of this paper proceeds as follows. Section 2 presents a review 
of the relevant literature. Section 3 describes the mathematical model of design-
ers’ collective search effort. The PD performance measures and team-formation 
strategies details follow these explanations. In Sect. 4, we describe our simulation 
experiments and report the results. Finally, Sect. 5 presents our conclusions along 
with the implications and limitations of the study.

2  Literature review

The social and management literatures discuss the benefits for the communica-
tive and diverse structures (Coleman 1990; Obstfeld 2005; Sosa 2011, 2014; Liu 
and Bin 2017; Xu and Xuan 2010). However, with the complexities of PD pro-
jects, the right team-formation strategy remains unclear. Two critical aspects of 
those projects are organizational integration capability and interaction pattern 
among subsystems of a product (being developed). The former one is essential as 
in complex projects, organizational routines are often interrupted over the course 
of the project, and integration is crucial. The latter one is representative of the 
complexity of design space.

In this section, we first review the literature on the formation of teams in PD 
projects. We focus on communicative (dense) and diverse (sparse) structures. We 
then review PD integration, and work integration mechanisms that are needed to 
maintain work integrity of the distributed project activities. Finally, we discuss 
interaction patterns and collective problem-solving perspectives.
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2.1  Team‑formation in PD projects

The central debate on the structural dimension of social capital revolves around 
whether more informational and performance benefits are gained from commu-
nicative or diverse structures (Kilduff and Brass 2010; Luke and Leonardi 2018; 
Perry-Smith and Mannucci 2017). The communicative structure provides a sup-
portive environment that is desirable for innovation (Obstfeld 2005). In such struc-
tures, common third-parties are frequently present that motivate the designers to 
engage in design-related interactions, and consequently, they create a collaborative 
atmosphere needed for creativity (Coleman 1990; Obstfeld 2005). In general, dense 
structures and third-parties provide trust and information sharing among designers. 
Hence, teams are expected to have a higher performance. This argument has also 
been reflected in discussions on R&D teams’ arrangements. Specifically, decreas-
ing spatial distance of teams is expected to improve PD performance by improving 
communication frequency among the teams (Allen 1977; Krishnan and Ulrich 2001; 
Bardhan et  al. 2013). However, high communication may not always improve PD 
performance. For instance, cyclic interdependencies among designers are common 
in PD projects (Smith and Eppinger 1997). However, managing those cyclic com-
municative interactions can be essentially challenging as they can sometime increase 
design errors (Sosa et al. 2013). Furthermore, with cycles, designers cannot always 
focus on their own components and may make merely locally optimal decisions.

In a diverse structure, when a focal designer—who has interactions with a large 
number of designers that tend to be disconnected from one another—is more likely 
to be creative and innovative. Essentially, this association drives from the fact that 
a diverse network most probably gives the focal actor access to diverse knowledge, 
which can be combined into novel outcomes (Burt 2004; Fleming et al. 2007). In 
addition to the structural features, the knowledge-diversity content of designers’ 
interactions has been considered to improve creativity conditions for design teams 
(Sosa 2011).

In the PD literature, the communicative and diverse structures are found to be 
associated with distinct team performance advantages. For instance, in the study of 
a software development company, Sosa (2011) analyzed engineers’ interactions. He 
found dyadic interactions that channel various knowledge domains are more likely to 
facilitate the generation of creative ideas. They also observed that when dyadic net-
works (i.e., common third parties) have cohesion levels below a threshold level, they 
support the generation of creative ideas. However, a highly cohesive social network 
of engineers can also negatively affect creativity. By examining other aspects of the 
same software development data, Sosa (2014) observed positive effects of a social 
embeddedness of designers’ dyadic relationship—combination of tie strength and 
network cohesion—on the probability that they realize the need for design rework 
(i.e., corrective or completion actions).

As briefly mentioned in the Introduction Section, the formation of PD teams 
can be potentially challenging due to the complexities in product architectures. 
On the one hand, the process of developing a product first includes the definition 
and decomposition of product subsystems (i.e., conceptual and system level design 
discussed in Parraguez et  al. (2015)), and then the integration of the subsystems. 
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Each subsystem represents a part of the product architecture and includes a group 
of components that collectively perform a higher-level function (Gokpinar et  al. 
2013). For instance, in a vehicle development project, subsystems can be the front 
suspension, steering wheel, door trim, and front seat, among others. Similarly, in a 
software development project, subsystems can be groups of source codes (MacCor-
mack et al. 2006). Each of the subsystems in these two examples include a group of 
components.

On the other hand, according to product architecture concepts, not all subsys-
tems in a product architecture are of equal importance (Ulrich 1995; Baldwin et al. 
2014). All complex systems, including PD systems, can be described in terms of 
their architecture—that is, as a hierarchy of subsystems that in turn have their own 
subsystems (Simon 1962). Product architecture in particular has been defined as 
“the scheme by which the function of a product is allocated to its constituent compo-
nents” (Ulrich 1995). From a product architecture perspective, some subsystems are 
“core” to system performance, whereas others are only “peripheral” (Tushman and 
Rosenkopf 1992). Core subsystems have been defined as those that are tightly cou-
pled to other subsystems, whereas peripheral subsystems tend to possess only loose 
connections to other subsystems (Tushman and Peter 1998). Such core-peripheral 
oriented structures are common in the development of complex products (MacCor-
mack et al. 2006; Baldwin et al. 2014).

2.2  PD integration

In a complex and distributed environment of projects, organizational routines and 
norms are often interrupted over the course of the project; therefore, their integra-
tion is essentially important. Work integration is defined as mechanisms across the 
organization and task boundaries to maintain the integrity of the distributed project 
works from the beginning to the end (Anderson and Parker 2013). Organizations 
with high integration capabilities can integrate different design solutions proposed 
by team members and are likely to develop a product using the best design solu-
tions for each subsystem with low costs. Conversely, organizations with low inte-
gration capabilities are more likely to converge toward lower quality, more expen-
sive designs. Our differentiation between capable and incapable PD organizations 
is consistent with the following feature of organizations: workers in teams need to 
integrate members’ knowledge in an ongoing process of mutual adjustment as their 
work progresses (Kozlowski et al. 1999, Gardner et al. 2012). In other words, knowl-
edge integration makes some teams to be more effective than others by developing 
dynamic capabilities that enable them to integrate their knowledge in a systematic 
and reliable way (Gardner et al. 2012).

This view on various level of organizational capability for PD integration can 
describe the heterogeneity of operational and product performance among PD pro-
jects. Usually, operational performance measures the focus on adherence to pro-
ject schedule and budget, while product performance measures the focus on finan-
cial and market performance of an innovative project (Blindenbach-Driessen et al. 
2010; Tatikonda and Montoya-Weiss 2001). In addition, operational performance 
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is generally considered to improve product performance (Tatikonda and Montoya-
Weiss 2001). Following this perspective, capable PD organizations can be seen as 
those that achieve high operational and product performance levels by identifying 
and integrating best design solutions. However, incapable PD organizations may be 
conceptualized as the ones with low operational and product performance levels, as 
they reach only to the average solutions.

Different integration capability levels of PD projects can result from their 
organizational context and environment. Generally, the organizational context in 
which teams operate affect their performance by providing them access to techni-
cal knowledge and resources to solve their problems (Griffith et al. 2003). In addi-
tion, some teams may have access to more resources or face fewer constraints from 
their organizational context (Young-Hyman 2016). Organizational context should 
create an environment where the top management translates prioritized strategic 
themes into actionable goals for middle management. In such environment, the lat-
ter coordinate with each other and report upwards on the progress of implementa-
tion to enable corrective actions (Ethiraj and Levinthal 2004, Vuori and Huy 2015). 
Hence, interactions among top and middle management are essential for innovation 
success. Nevertheless, this can be challenging given that individuals may tend to 
avoid bringing up issues during their interactions (Vuori and Huy 2015). Such poor 
mutual understanding between top and middle managers in the innovation process is 
common (Tripsas and Gavetti 2000; Gilbert 2005)—e.g., see Vuori and Huy (2015) 
for Nokia’s recent innovation challenges.

2.3  Interaction pattern and collective problem‑solving perspective

The PD literature shows that a product’s architecture—which maps functions of a 
product to its components (Ulrich 1995)—does not follow a unique structure, and 
there could be more than one architectures to satisfy the functional requirements of 
a product (MacCormack et al. 2006). Such architectures probably differ in various 
performance attributes such as product quality and reliability (Ulrich 1995), parti-
tioning of design tasks and efficiency of development process (Von Hippel 1990). 
Understanding how such product architectures make performance trade-offs has 
been a critical topic for scholars (MacCormack et al. 2006). Following this line of 
research, we examine how different product architectures affect the performance of 
various team-formation strategies.

In a broader context than PD, empirical work in organizational, social, and tech-
nological domains has shown that the interactions among the elements of a system 
are often patterned, rather than random (see Rivkin and Siggelkow (2007)). Com-
mon interaction patterns include small world, hierarchical, and modular (Watts 
1999; Rivkin and Siggelkow 2007; Baldwin and Clark 2000). We follow these three 
patterns for five teams, presented in Fig. 1. Cyclical and acyclical patterns are also 
known as “core-periphery” and “hierarchical” (MacCormack et  al. 2006, 2012; 
Baldwin et al. 2014). These two patterns capture the extent to which each subsystem 
depends on itself via other subsystems (Sosa et al. 2013). In acyclical pattern, there 
is a high degree of cyclicality and one team’s design decisions affect its own search 
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landscape, both directly and via its impact on other teams’ search landscape. This 
structure is absent in an acyclical subsystem interaction pattern. Modular pattern, 
which is a common feature of product architectures (Ethiraj and Levinthal 2004; 
Ethiraj et al. 2008), includes modules that are developed independently.

Development of a new product is often conducted in a distributed manner, where 
teams of designers simultaneously make partially autonomous decisions about prod-
uct’s components that affect the overall product performance (Mihm et  al. 2003). 
This characteristic of PD projects is consistent with the PD conceptualization that 
decision-makers collectively solve a distributed information-processing problem 
(Thomke 1997). During the design process, designers engage locally in optimizing 
features of a component. In addition, due to interactions among the components, 
designers need to have an ongoing communication process (Mihm et  al. 2003; 
Fisher et al. 2018). Hence, not only a designer’s own problem-solving activities, but 
also the activities of the other peers can affect that designer’s activities.

Overall, following the distributed development perspective of the PD projects, we 
conceptualize these projects as collective problem-solving efforts by some agents 
(i.e., designers) for a complex problem. Collective problem-solving efforts by inter-
connected agents have been studied in the literature of complexity and organiza-
tional decision-making (Barkoczi et  al. 2015). For instance, Lazer and Friedman 
(2007) used an extended NK landscape model to study how network structure can 
affect the resulting collective problem-solving attempt. As another example, Fang 
et al. (2010) contemplated inter-personal network in organizations using a compu-
tational model. They illustrated that when subdivided into semi-isolated subgroups, 
the organization’s long-term learning performance is expected to be significantly 
higher than when the network is not divided into subgroups (or when subgroups 
have many cross-group links).

3  Model

To understand how team-formation strategies affect PD performance, we build an 
agent-based simulation model (ABM) of PD based on the well-studied NK land-
scape (Kauffman 1993). In this section, we set up the mathematical model used to 
simulate the search process. The constituents of the model are: (1) characterization 

PD 
subsystem 1 2 3 4 5

1 √ √ √ √ √

2 √ √ √ √ √

3 √ √ √ √

4 √ √ √ √

5 √ √ √

PD 
subsystem 1 2 3 4 5

1 √

2 √ √

3 √ √ √

4 √ √ √ √

5 √ √ √ √ √

PD 
subsystem 1 2 3 4 5

1 √ √

2 √ √

3 √ √

4 √ √

5 √

(a) Cyclical (b) Acyclical (c) Modular

Fig. 1  Interaction patterns among five subsystems being developed by five teams
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of the landscape over which the teams conduct search, (2) organizational arrange-
ment based on which designers interact, and teams’ interaction strength measure, (3) 
the collective search endeavor by designers, (4) the defined performance measures, 
and finally, and (5) the applied team-formation strategies. We discuss each constitu-
ent next.

3.1  The landscape model

We develop our model based on the NK landscape (Kauffman 1993). Consider a prod-
uct with nb subsystems. The landscape of subsystem i consists of ne interacting binary 
design elements—where 0 and 1 represent different choices for each element. Assum-
ing that all subsystems have the same number of elements (i.e., ne ), the total number of 
elements for the product is N = nb × ne . The state of subsystem i , denoted by ai is 
known when the states of its ne elements are known. Consequently, for each subsystem, 
there are 2ne different design configurations. For example, one possible configuration of 
subsystem i when ne = 5 could be ai = (00110) . Similarly, and from a higher-level per-
spective, the product state denoted by A =

{
∪
i=nb
i=1

ai| i = 1, 2,… , nb
}
 can have 2N pos-

sible design configurations.
For each of 2N possible design configurations (i.e., design alternatives), there is 

a defined product performance (e.g., quality). This performance is represented by a 
fitness value, and defined as the average of contributions of the product subsystems’ 
elements. The contribution of each element xi of subsystem i is defined such that it 
depends on: (i) the state of the element xi itself, (ii) the state of K other randomly-
selected elements of subsystem i that interact with element xi, and (iii) the status of 
C randomly-selected elements of the other subsystems that interact with that subsys-
tem of element xi.

In order to generate the landscape, at first, the contributions of the subsystem’s 
elements need to be generated. Let us denote the set of subsystems interacting with 
subsystem i as DEi . For instance, if subsystem i interacts with three other subsys-
tems, then the contribution of element xi depends on K + 3 × C other elements.1 
These contribution values are drawn from a uniform [0, 1] distribution.2

Let f (xi|A) be the generated contribution of element xi when the product con-
figuration is A ; therefore, the product performance when its configuration is A . This 
fitness value is represented by a fitness value, f (A) which is the mean of the contri-
butions of all design elements:

(1)
f (A) =

nb∑
i=1

∑
x

f (xi�A)

N

1 The number of required contributions for an element is 2K+DEi×C.
2 It has been shown that the properties of the fitness landscape are not sensitive to the distribution 
applied to generate the landscape (Weinberger 1991).
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3.2  Organizational structure and teams interaction strength

We generate an organizational network or team arrangement using the “connected 
caveman” structure. This was developed by Watts (1999), and recently used by Fang 
et al. (2010) to create interpersonal organizational structures. In a network representa-
tion of a PD project, nodes (i.e., designers) correspond to the designers in teams. In 
addition, an edge indicates organizational relationship between two designers. In the 
caveman structure, the designers of each PD team are clustered and minimally con-
nected to the other PD teams.

Assume there are nb teams and each team j is developing subsystem i(i = j) . Moreo-
ver, each team j is comprised of nq number of designers shown by 
Dj =

{
d
j
q|q = 1, 2, .., nq

}
 . Each designer is an agent in our model. We assume that 

there is a fixed number of teams for development of each subsystem. Let us define the 
subset of designers Dj

q to be designers dj
′

q′
 , who have organizational interactions with 

designer djq . This set for each designer is determined according to the organizational 
network structure.

As discussed earlier, each team is developing a particular subsystem with varying 
interaction and criticality level. To model this, the subsystem’ interaction intensity with 
all other subsystems is considered. Toward that end, we define a “subsystem interac-
tion strength” measure that is based on two measures: (a) how many subsystems affect 
the fitness value of subsystem j (subsystem i = j ) that is being developed by team j 
(i.e., |DEj| ), and also, (ii) how many subsystems’ fitness values are affected by subsys-
tem j that is being developed by team j (i.e., |SIj| ). Specifically, we define interaction 
strength measure, as follows, that captures the overall influence of team j in the space 
of a complex PD project. In Eq. 2, we define a weight parameter W > 1 . This parameter 
is a fixed integer, which we set experimentally to enable us to differentiate between two 
types of interactions. In one type of interaction, a focal team influences other teams, 
whereas, in other types, a focal team is impacted by other teams. Interaction strength 
measure mj is similar to the other defined constructs in the literature [i.e., Fan-out and 
Fan-In measures in (Baldwin et al. 2014)] for the visibility matrix which calculates the 
extent of redesign iterations/efforts for the changes in a particular element of a system 
(Sharman and Yassine 2004; MacCormack et al. 2006; Baldwin et al. 2014).

The defined measure enables us to define scenarios in which the teams tend to have 
particular structure and behaviors. That is, teams are established to have particular fea-
tures with a probability that is a function of the interaction strength measure mj (e.g., 
increasing or decreasing in mj).

3.3  Design process as collective search

To materialize various social structures in this model, designers’ absorptive 
capacity (Cohen and Levinthal 1990) as well as the designers’ expertise are varied 

(2)mj =
|DEj| +W × |SIj|
(1 +W) × nb
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across teams (more details are provided in Sect. 3.4). Absorptive capacity is the 
capability to understand shared design solutions by the other designers. Cohen 
and Levinthal (1990) defined absorptive capacity as “… prior related knowledge 
confers an ability to recognize the value of new information, assimilate it, and 
apply it to commercial ends”. Therefore, different team-formation strategies are 
considered to affect designers’ absorptive capacity and their expertise distribu-
tion, who are collectively conducting a search over a performance landscape (see 
Fig. 2).

We conceptualize a PD project as a parallel collective search process conducted 
by the designers of PD teams. That is, the design solution of each designer, at any 
time t , is regarded as a position over the product landscape with N decisions (i.e., a 
design alternative among 2N alternatives), and each focal designer conducts his own 
search while communicating with other designers at some occasions.

In our model, initially and at time t = 0 , each designer djq is assigned a randomly 
selected design solution or state s0

q,j
 and his fitness value is calculated. Moreover, at 

each subsequent time t , each designer djq engages in either design improvement 
through a local search or communicating design solutions as follows (Lazer and 
Friedman 2007; Lin 2014). At first, at each simulation time, designers engage in 
conducting a local search. If the local search endeavor was successful, and a focal 
designer finds a superior solution, then he will not perform any other task at time t . 
However, with unsuccessful local searches the set of designers whose local search 
processes do not result in finding superior solutions get involved in communicating 
with the other similar designers (i.e., whose local searches were unsuccessful at each 
time t).

According to the local search process, a focal designer changes one of the states 
of the design elements in his expertise domain, i.e., xi ∈ EX

j
q , from 0 to 1 or vice 

versa. That generates a new alternative s̃t+1
q,j

∈ S which the designer accepts if the 
resulting alternative has a higher fitness value; thus:

Fig. 2  Caveman network (Watts 1999; Fang et al. 2010) for PD teams’ organizational arrangement (left) 
that affects a collective search effort over the design landscape (right). The paths shown on the right 
panel are just illustrative of search trajectories of teams over time
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Otherwise, designer djq retains the previous alternative and st+1
q,j

= st
q,j

.
Once all the communicating designers at time t are recognized, we create pairs of 

communicating designers who have organizational interactions (based on the struc-
ture discussed in Sect.  3.2). In doing so, there could be few designers for whom 
communicating partners cannot be found. Those unpaired designers, then, retain 
their design solution (i.e., position over performance landscape) for the next time 
period. Assume designers dj

′

q′
 and dj

′′

q′′
 are selected for communication at time t , and 

d
j��

q��
∈ D

j�

q�
 , and also assume the latter has a higher fitness than the former, i.e., 

f (st
q��,j��

) > f (st
q�,j�

) . Then, the state of each element of the design solution of designer 
d
j′′

q′′
 is imitated with probability ACq��,q� ∈ [0, 1] , and, is used by designer dj

′

q′
 , at the 

next time period. In addition, designer dj
′′

q′′
 retains the current design alternative for 

the next period, st+1
q��,j��

= st
q��,j��

 . This process is repeated for all designers who are 
communicating with each other at time t.

The defined parameter ACq′′,q′ represents designers’ absorptive capacity, and 
shows the percentage of the design solutions (e.g., decision string [0,1,0,1]) of 
designer dj

′′

q′′
 that are imitated by designer dj

′

q′
 and is inversely associated with the 

knowledge and background diversity level in teams (i.e., the highly diverse team has 
low absorptive capacity where a low percentage of design solutions are communi-
cated among designers). Since absorptive capacity can be defined at different levels, 
e.g., individual, team, our defined parameter and modeling assumption appear to be 
plausible.

When a designer attends to his own design and conducts a local search, his exper-
tise domain can significantly affect the search process effectiveness. Following the 
former modeling assumptions (Kavadias and Sommer 2009), we assume a focal 
designer djq is knowledgeable about a subset of ne design elements of subsystem i , 
that is denoted by EXj

q ∈ ne elements of subsystem i . Additionally, the expertise 
domain of each designer is defined to cover only one design element, |||EX

j
q
||| = 1 ∀djq.

3.4  Teams with different structures

When PD teams have a closely connected and cohesive structure, designers are 
more likely to have higher absorptive capacity, and, also possess similar knowledge 
domains. However, in teams with sparse structure, designers have diverse expertise, 
and their communication is less likely to be effective.

At first, we consider PD projects where managers apply similar (homogeneous 
social structure) structures for all PD teams. To this end, teams with two different 
structures are elaborated. In these projects, the team features like designers’ commu-
nication effectiveness and expertise distribution are unrelated to the teams’ subsys-
tems features like its interaction strength measure (i.e., mj that was defined in 
Sect. 3.2). Let py

dd
∈ [0, 1] denote the diversity level that policy y applies for team 

formation. Then, we assume that the team diversity level is: (i) adversely related to 
the probability that the designers in teams have similar expertise domain, or 

(3)st+1
q,j

= s̃t+1
q,j

if f (s̃t+1
q,j

) > f (st
q,j
)
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mathematically, P(EXj
q = EXj) = 1 − p

y

dd
∀d

j
q and |||EX

j
q
||| = 1 ; and, (ii) adversely 

associated with the designers’ absorptive capacity level, or mathematically, 
ACq��,q� = 1 − p

y

dd
∀d

j�

q�
, d

j��

q��
.

We define “communicative teams” to be assembled by considering a low diver-
sity level, p1

dd
≈ 0 . As a result, the designers’ absorptive capacity is high and, also 

designers have similar expertise with a high probability. On the other hand, “diverse 
teams” are assembled with a sparse structure. Hence, a high diversity level, p2

dd
≈ 1 

is enforced. Consequently, designers’ absorptive capacity is low and, also with a low 
probability, designers have similar expertise domains.

We investigate the performance of PD projects that simultaneously utilize both 
“communicative and diverse teams”. In this regards, we elaborate two PD systems 
that use both communicative and diverse teams. In these PD systems with “hetero-
geneous team structures”, designers’ absorptive capacity and their likelihood to have 
similar expertise are associated with the teams’ interaction strength measure ( mj that 
was defined in Sect. 3.2). To that end, we also use core and peripheral concepts that 
have been defined in the literature (Tushman and Rosenkopf 1992; Tushman and 
Peter 1998). This enables us to investigate whether performance of PD systems with 
heterogeneous teams are affected by the team structure of those who are developing 
subsystems with higher/low interactions strength.

We define one PD system with heterogeneous teams where teams with higher 
interaction strength (who develop central subsystems) are formed with a more 
closely connected structure. That is, a set of designers who have shared third-parties 
or simply they cohesive structure—are allocated to more central subsystems. Stating 
it differently, the more teams have sparse and disconnected structure, the less cen-
tral/core subsystems they design. Hence, we refer to these teams as “diverse teams 
developing peripheral”. The following assumptions are considered to form diverse 
teams developing peripheral: (i) probability that designers in team j have similar 
expertise domain is increasing in their interaction strength, or mathematically, 
P(EX

j
q = EXj) = mj ∀d

j
q , and ||EXj|| = 1 , and, (ii) the designers’ absorptive capacity 

is increasing in their interaction strength: ACq��,q� = mj ∀d
j�

q�
, d

j��

q��
.

The other PD system with heterogeneous teams is formed with teams that are 
closely connected and subsystems that have lower interaction strength. In other 
words, following this strategy, diverse teams develop a core subsystem with higher 
number of interactions. We refer to those teams as “diverse teams developing core”. 
More precisely, diverse teams developing core are characterized as: (i) probability 
that designers in team j have similar expertise domain is decreasing in their interac-
tion strength, or mathematically, P(EXj

q = EXj) = 1 − mj ∀d
j
q and ||EXj|| = 1 , and, 

(ii) the designers’ absorptive capacity is decreasing in their interaction strength: 
ACq��,q� = 1 − mj ∀d

j�

q�
, d

j��

q��
 . The team formation scenarios are listed in Table 1.

3.5  PD performance

As a collective endeavor, design solutions should be acknowledged and accepted 
by all members of a team, and they need managerial approval. Thus, not only 
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discovery of a design solution, but also, its acceptance in the organization needs 
to be considered. Specifically, the latter process requires managerial and organiza-
tional resources. This can be discussed from the integration perspectives (Ander-
son and Parker 2013; Mishra and Sinha 2016). This aspect emphasizes the fact that 
knowledge in projects are complex. Consequently, in a distributed environment like 
projects, organizational routines and norms are often interrupted over the course of 
project. Hence, some mechanisms across organization and task boundaries are nec-
essary to integrate the distributed project work (Anderson and Parker 2013).

To materialize the effectiveness of firms in acceptance and integration of a 
superior solution among a team’s designers, we define two quality measures. One 
measure of product quality uses the best design solution discovered by designers 
of each team for its subsystem. The second quality measure is the average fitness 
of all design solutions found by all designers. An organization with a high capabil-
ity of integrating different design solutions—proposed by team members—is likely 
to develop a product using the best design solutions for each subsystem with low 
costs. In other words, firms with a high integration capability presumably can apply 
the former quality scale. However, when PD systems are less capable (e.g., unable 
to cope with high integration costs), they are more likely to converge toward lower 
quality designs. In our paper, that lower product design is represented by the second 
quality scale or the average of design solutions of all.3

In this paper, the first quality scale that uses the best design solutions for each 
subsystem is called the best quality measure. Let fitness value Qt

ij
 indicate the quality 

of subsystem i at time t that is being developed by team j (with i = j ). Then, the 
overall best product quality at time t is the average of subsystem’s quality:

The second quality scale, or average quality, calculates the average fitness of all 
the design solutions found by the designers. Thus, the overall product quality can be 
represented as:

(4)PQt =

∑j=nb
j=1

Qt
ij

nb
such that Qt

ij
= Max

q
[f (st

q,j
)] for ∀dj

q
∈ Dj

(5)Vt =

nb∑

j=1

∑

q

f (st
q,j
) for ∀dj

q
∈ Dj

3 In a very abstract view, the first quality measure represents the capability of a PD system to analyze all 
design solutions, and select the best ones found for each subsystem. Whereas, the second quality scale 
indicates less capable systems that use lower amount of resources, and converge toward the average fit-
ness of all the designers’ solutions.
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4  Experiments and results

In this section, we describe the experimental setup (written using Python pro-
gramming language) and report the results. One set of parameters in our model is 
related to the general setting of PD projects. The parameter N in the NK simula-
tion model is the total number of elements in the landscape: N = nb × ne . In our 
experiments, we assume that the product consists of nb = 5 subsystems and that each 
subsystem’s landscape consists of ne = 4 interacting elements, respectively; hence, 
N = nb × ne = 4 × 5 = 20 . Furthermore, we assume there are nq = 5, 7 number of 
designers in each of the teams. Hence, a PD project with five subsystems, includes 
5 × 5 = 25 ( 5 × 7 = 35 ) designers (i.e., agents) in total.

The second type of parameters define the PD landscape features. The rugged-
ness of the search landscape depends on both parameters K and C—in other words, 
on how interdependent the elements of the subsystems are (Levinthal 1997). Low 
values of K and C imply that the contribution of one element is rather limited and 
independent of the other elements; hence the landscape is relatively smooth and a 
change in the state of one element does not significantly affect the fitness of others. 
However, if the values of K and C are high, then the fitness landscape becomes more 
rugged; here a change in the state of one element may have a significant effect on the 
fitness values of other elements. In such landscapes, an incremental search process 
may stop at a local optimum.

To cover both smooth and rugged landscapes, we assume parameters K and C to 
be either 1 or ne − 1 (i.e. the number of elements of a subsystem minus one). Possi-
ble configurations based on these two inputs are presented in Table 2.

It is worth noting that the four defined PD project settings, shown in Table  1, 
represent the architectural knowledge of a firm. In other words, the interaction inten-
sity within and between subsystems, or K and C respectively, represent the organiza-
tion effectiveness in managing interactions. When, within and between subsystem 
interactions are light and intense ( K = 1 , C = ne − 1 ), the element interactions have 
not been managed properly—as each team is developing a subsystem that its ele-
ments, in a large extent, are independent. In the other project configurations, within 
subsystem interactions are more intense than, or at least similar to, that of between 

Table 2  Different Landscape Scenarios

a This has smallest number of interactions among elements, hence, its landscape is smooth. The other 
three configurations have more rugged landscapes, as there are a higher number of interactions among 
elements

K C Scenario

ne − 1 ne − 1 Elements of both a subsystem and different subsystems are intensely interdependent
1 1 Elements of both a subsystem and different subsystems are mildly  interdependenta

ne − 1 1 Elements of each subsystem are intensely interactive, whereas, elements of different 
subsystems have a low number of interactions

1 ne − 1 Elements of a subsystem are intensely interactive, whereas, elements of different sub-
systems have a low number of interactions
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subsystem interactions. Hence, these interactions among the elements of these prod-
ucts are managed more properly.

Subsystems in a PD project may relate to each other in different architectures 
(patterns). Figure  1 in Sect.  3.2 shows the three patterns, cyclical, acyclical and 
modular pattern, that we use in our experiments for nb = 5 teams.4

4.1  Experiment 1: uniformly assembled teams

Managers may use the same policy to form teams for all subsystems. In our first 
set of experiments, we investigate whether closely connected and less diverse teams 
result in higher PD performance than that of sparse and diverse teams. Will PD pro-
jects have superior performance if they use one of these team-formation strategies? 
In addition, does the answer to this question depend on either the interaction pattern 
among product subsystems or the level of interactions intensity? How about the inte-
gration capability of firms?

We compare the performance of a PD project with two team structures: (i) com-
municative teams who have high absorptive capacity and similar expertise, (ii) 
diverse teams whose communication is less effective and have diverse expertise. To 
that end, we assume the former and latter assign low p1

dd
= 0.1 and high p2

dd
= 0.9 

diversity levels, respectively. We compare these strategies based on both the best 
and average quality measures that are defined in Eqs.  4 and 5. We simulate each 
scenario for a fixed number of time periods and record the performance measures of 
all the teams.

For each combination (PD setting and subsystems’ interaction pattern), we gener-
ate 100 landscapes. For each landscape, we create the corresponding PD project sce-
nario (e.g., with communicative teams) and let teams conduct the search process for 
100-time periods. This process is repeated for each of the 100 landscapes. Then, the 
performance at each simulation time is defined as the average performance at that 
time period across all landscapes.

Graphs5 in Fig. 3 depict the best quality performance ( PQt in Eq. 4) of PD pro-
jects with the K = C setting.6 According to panels (a)-(d), deploying diverse teams 
results in higher long- term performance than using communicative teams. This 
holds for all PD settings with various subsystems interaction patterns and different 
interaction intensity levels (i.e., within-team, K, and between-team C interaction lev-
els). However, across all panels, in the short-run, PD systems with communicative 
teams outperform those with diverse teams. As discussed earlier, PD systems need 
to have a high integration capability (i.e., can manage integration costs) to attain 

5 In all Figs. 3, 4, and 5, the following features are common: (1) each point is the average performance 
of 100 simulation runs, and (2), subsystems interacting in modular (blue), cyclical (green), and acyclical 
(red); and also nb = nq = 5;ne = 4.
6 The complete set of results are reported in the Online Appendix.

4 The patterns for nb = 7 teams are exactly the same pattern as those shown in Fig. 1. Note that modular 
pattern is perfectly modular with every two teams having interactions only with themselves, and do not 
interact with any other team.
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the best quality performance levels. Thus, for such projects, diverse teams tend to 
achieve superior best quality solutions than those of communicative teams.

Graphs in Fig.  4 depict the average quality performance ( Vt in Eq.  5) of PD 
projects with the K = C setting and the complete set of results are reported in the 
Online Appendix. Plots indicate that when firms can attain average quality perfor-
mance, two team-formation strategies result in different design performances. For 
all PD settings (e.g., interaction pattern, K,C ), communicative teams tend to have 
higher average quality solutions than those of diverse teams. Interestingly, when 
PD systems are incapable, and consequently, can only attain average quality design 
solutions, communicative teams perform better than diverse teams. These results are 
different from those for projects capable of converging toward best quality designs. 
Hence, our result indicates that superior team-formation strategy changes with the 
PD system’s capability level.

To investigate the patterns observed in the graphs, paired t-tests are conducted 
to statistically compare performances across projects. Because each project type 

Fig. 3  The best quality performance of PD projects. Note Communicative teams represented by solid and 
continuous line; diverse teams represented by dotted lines

Fig. 4  The average quality performance of PD projects. Note Communicative teams represented by solid 
and continuous line; diverse teams represented by dotted lines
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(e.g., diverse team strategy and K = C = 1 ) is simulated on the same landscape as 
other type (e.g., communicative team strategy and K = C = 1 ), the observations in 
one sample (e.g., performance of a project with diverse teams) can be paired with 
observations in another sample (e.g., performance of a project with communica-
tive teams). As the project’s performance constantly changes over time, we used the 
average PD performance in the last 10-time periods as performance measure in our 
statistical tests. We have conducted two paired t-tests. The null hypothesis for the 
first set of paired t-tests expects the mean of best quality of a system with diverse 
teams to be equal to that of a system with communicative teams.7

The results of the first set of paired t-tests are provided in Table 3. The results 
on p-values of all shown t-tests are provided in Online Appendix (Tables 10–14). 
Clearly, the observed patterns in Fig. 3 are reflected in the results. Specifically, when 
comparing the bests design solutions found by communicative and diverse teams, 
those of the former teams tend to have lower fitness values than those of the latter 
teams. Across all PD settings (e.g., subsystems pattern, K ), this result is robust and 
holds true.

The null hypothesis of the second set of paired t-tests expects that there is no 
difference between the mean of average quality of a PD project with diverse teams 
and that of a project with communicative teams. These tests’ results are shown in 
Table 4. Consistent with the graphs in Fig. 4, regarding the average design solutions 
found by communicative and diverse teams, those of the former have higher fitness 
values than those of the latter. This holds for all PD settings, e.g., subsystems pat-
terns,K,C.

Our experimental results imply that depending on the integration capability and 
costs, PD managers should use either of the diverse and communicative teams. If 

Table 3  Paired t tests comparing the best quality performance of PD systems with communicative teams 
and those with diverse teams

Asterisk indicates a 1% significance level

Inputs Pattern t value Pattern t value Pattern t value

nq K C

5 1 1 Modular − 7.892* Cyclical − 9.125* Acyclical − 7.292*
1 3 − 11.698* − 11.47* − 8.157*
3 1 − 8.249* − 12.305* − 8.628*
3 3 − 10.094* − 15.343* − 11.565*

7 1 1 − 5.118* − 8.104* − 6.555*
1 3 − 5.888* − 10.517* − 10.636*
3 1 − 7.564* − 8.34* − 8.939*
3 3 − 7.603* − 10.246* − 8.481*

7 In other words, the first set of paired t tests, compare PQt in Eq. 4 of diverse teams with that of com-
municative teams. Therefore, positive and negative t values indicate communicative teams are doing, 
respectively, better and worse than diverse teams.
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the PD systems can efficiently integrate different design solutions (e.g., low integra-
tion cost), diverse teams with a high absorptive capacity should be assembled. How-
ever, for organizations that have inefficient integration processes, this team-forma-
tion strategy may not be superior. In the cases that, large amount of resources (e.g., 
costs) are necessary to integrate different design solutions, managers should build 
communicative teams. The rational for this strategy is that, according to the average 
quality measure, communicative teams tend to find design solutions with higher fit-
ness values than those of the communicative teams.

It is worth noting why the two team-formation strategies make different per-
formance trajectories/patterns. With deploying communicative teams, as design-
ers are very likely to have similar expertise, the PD project confines its collective 
search effort to only parts of the whole landscape. As an example, consider an 
extreme case, when all designers in each team have the same expertise, or math-
ematically, EXj

q = EXj ∀d
j
q ∈ Dj , and, there are five designers ( nq = 5 ) in each 

of the five ( nb = 5 ) teams, developing subsystems with ne = 4 elements. Then, 
such a collective search effort, and in its full reach, eventually, can examine only 
25 × 25 = 800 design solutions, which is 800

220
= 0.076% of the whole landscape. 

Despite its confined search, using communicative teams has its own advantages. 
This strategy forms teams with high absorptive capacity, and their communications 
are highly effective. Thus, when a designer finds a superior design solution, that 
solution, quickly, and to a high extent, is communicated to the other designers.

With an imperfect imitation of design solutions, a number of designers converge 
and get close to the set of designers with superior designs (e.g., local optima). That 
number of designers that converge toward superior solutions (i.e., with high fitness 
values), by partially imitating their design solutions, is likely to be high at the initial 
stages of the PD process since the designers’ solutions are more likely to be inferior 
(i.e., the solutions are randomly selected). However, at the later steps of the PD pro-
cess, since designers’ solutions have improved through either local search or com-
munication, they move back and forth between solutions near superior ones. That 

Table 4  Paired t tests comparing the average quality performance of PD systems with communicative 
teams and those with diverse teams

Asterisk indicates a 1% significance level

Inputs Pattern t value Pattern t value Pattern t value

nq K C

5 1 1 Modular 14.724* Cyclical 18.423* Acyclical 16.213*
1 3 14.044* 19.551* 18.781*
3 1 16.11* 20.671* 14.725*
3 3 16.027* 20.882* 23.895*

7 1 1 21.176* 28.842* 29.685*
1 3 27.541* 34.242* 33.736*
3 1 31.487* 32.575* 33.237*
3 3 31.508* 38.892* 33.651*
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phenomenon happens as designers partially imitate solutions of a superior designer 
at one time, and then, later at another time, they partially imitate design solutions of 
another superior designer. Those latter set of design solutions near a local peak is 
known as basin of attractions (Kauffman 1993; Levinthal 1997).

By building diverse teams, as designers are very likely to have different levels of 
expertise, the PD project benefits from a broad collective search effort that covers most 
of the whole landscape. Consider an extreme case, when all designers in each team 
have completely diverse expertise, or mathematically, EXj

q ∩ EX
j

q�
= � ∀d

j
q, d

j

q�
∈ Dj . 

Then, such a collective search effort can literally examine the whole landscape. Never-
theless, such a search effort is limited by factors such as available resources (e.g., sim-
ulation time).

Despite its wide collective search, usage of diverse teams has its own drawbacks. 
This strategy forms teams with low absorptive capacity, and their communications 
are highly ineffective. Thus, although a designer may find a superior design solution, 
that design, is communicated slowly and ineffectively to the other designers. Hence, 
designers are less likely to benefit from the other designers’ search effort.

The above arguments are confirmed by the following graphs in Fig.  5 (these 
graphs illustrate results for PD projects with and, and graphs for all PD settings are 

Fig. 5  The aggregated communicated elements and within-team dissimilarity of PD projects. Note Com-
municative teams represented by solid and continuous line; diverse teams represented by dotted lines
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provided in the Online Appendix). We observe similar patterns for all PD settings. 
Panels (a-left) and (b-right) show the number of design elements communicated 
between designers at each time. Interestingly, the number of design elements com-
municated between designers in communicative teams increases at first and then 
decreases sharply. Conversely, the number of communicated design elements for 
diverse teams show stable patterns, indicating that designers’ tendency to communi-
cate does not change throughout the PD process.

Additionally, we have calculated “within-team dissimilarity” of designers’ solu-
tions (see Fig.  5). Similar measures have been used in the literature (Fang et  al. 
2010, Schilling and Fang 2014), and we make pairwise comparisons of all nq design-
ers in each team. Specifically, each of N design elements of those designers are 
compared using the following formula. In this equation, �j

q1,q2,e
 takes the value 1, if 

element e of solutions of designers dj
q1

 and dj
q2

 are different, and the value 0, 
otherwise:

Panels (c) and (d) show within-team dissimilarity in Eq. 6 over time. According 
to these graphs, as designers find local optimum or superior solutions on the land-
scape, their solutions are imitated by the other designers. Consequently, within-team 
dissimilarity is decreasing for both communicative and diverse teams. By building 
communicative teams, within-team dissimilarity decreases quickly and, stabilizes at 
a very low level. On the other hand, within-team dissimilarity decreases at a lower 
rate when diverse teams are deployed.

Overall, the aggregated communicated elements and dissimilarity graphs in 
Fig. 4, are consistent with our conjectures on the performance effects of using com-
municative and diverse teams. While communicative teams benefit from search 
effort of the other designers who have found superior solutions, diverse teams are 
more likely to find more superior solutions by having a broad and powerful collec-
tive search effort.

To identify micro-mechanisms that drive our results, we have conducted some 
other experiments. Recall that team-formation strategies are characterized by con-
sidering two aspects of the designers’ search process: the absorptive capacity 
level ( ACq′′,q′ ) and the probability of designers having similar expertise domains 
P(EX

j
q = EXj) . To that end, the corresponding values of these two features are fixed 

at a high value close to 1, or, alternatively, a low value near 0. Hence, these two 
features can be the main drivers of the previously seen performance behaviors. To 
clarify this argument, we have conducted two set of experiments, and their results 
are provided in the Online Appendix.

In one set of experiments, we keep the absorptive capacity level fixed 
ACq��,q� = AC ∈ [0, 1], and then, redefine the two team-formation strategies: (i) 
communicative teams, or closely connected teams are deployed only by assuming 
a high probability for having similar expertise domains for all designers, and, (ii) 
diverse teams or sparsely structured teams are assembled only by considering a low 

(6)Dis =

nb∑

j=1

nq∑

q1=1

nq∑

q2=1

ne∑

e=1

�
j

q1,q2,e
∀d

j

q1
, d

j

q2
∈ Dj
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probability for designers having similar expertise domains. Next, we simulate PD 
systems with these two strategies for team assembly. The results are provided in the 
Online Appendix section.

In a similar experiment with different setups, we keep the probability by which 
designers have similar expertise domains fixed P(EXj

q = EXj) = P(EX
j

q�
= EXj) ∈ [0, 1] , 

and then, redefine the two team-formation strategies: (i) communicative teams or closely 
connected teams are deployed only by assuming a high absorptive capacity level for 
designers, and, (ii) diverse teams or sparsely structured teams are assembled only with 
consideration of a low absorptive capacity level for designers. Next, we simulate PD sys-
tems with these two strategies for team assembly. The results are provided in the Online 
Appendix.

Our results show that the best quality performance is concave in the absorptive 
capacity level ACq��,q� = AC ∈ [0, 1] , and also, is constant function of the probability 
by which designers have similar expertise P(EXj

q = EXj) = P(EX
j

q�
= EXj) ∈ [0, 1] . 

Similar performance patterns are seen for the average quality performance (see 
graphs in the Online Appendix). Thus, absorptive capacity level appears to be a 
highly critical factor in affecting PD performance compared with the distribution of 
expertise among designers.

4.2  Experiment 2: teams with heterogeneous structures

Managers may use the teams with heterogeneous structures, e.g., some teams with 
more closely connected structures develop some subsystems, whereas the other sub-
systems are developed by more diverse teams. In our second set of experiments, we 
investigate whether teams with heterogeneous structures—which we call hetero-
geneous teams—result in higher PD performance than that of closely connected/
diverse teams. Will PD projects have superior performance if they use teams with 
heterogeneous structures (i.e., having both diverse and communicative teams)? Does 
the answer to this question depend on either the interaction pattern among product 
subsystems or the level of interactions intensity?

We compare the performance of a PD project where diverse teams developing 
core/peripheral systems with that of the former strategies (i.e., communicative teams 
or diverse teams). More precisely, we compare the resulting performance of teams 
with heterogeneous forms (i.e., diverse teams developing core/peripheral systems) 
with that of teams with uniform structures (i.e., communicative/diverse teams). We 
define two types of the heterogonous teams: heterogonous core (i.e., diverse teams 
developing core subsystems and communicative teams developing peripheral sub-
systems) and heterogonous peripheral (i.e., diverse teams developing peripheral 
subsystems and communicative teams developing core subsystems). We compare 
these strategies based on both the best and average quality measures that are defined 
in Eq. 4 and 5. We simulate each scenario for a fixed number of time periods and 
record the performance measures of all teams.

As in our second set of experiments, we investigate strategies with heterogene-
ous forms according to their subsystems’ interaction intensity, limiting the exper-
iments with only cyclic and acyclic interaction patterns. In other words, since 
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with a modular pattern, to a large extent, teams have a similar interaction inten-
sity, therefore, we drop this pattern in our second set of experiments. Also, for the 
definition of interaction strength measure, we use W = 5 for the weight parameter 
in Eq. 2 (the value of the weight parameter only helps us to differentiate between 
teams under different interaction patterns; hence, its value is likely to be trivial as 
long as teams can have differing interaction intensity levels). With this assump-
tion, and under a subsystems cyclic pattern and nb = 5 , the teams’ interaction 
intensities are as follows: m1 = 0.8 , m2 = 0.8 , m3 = 0.6 , m4 = 0.4,m5 = 0.2 . How-
ever, for a subsystems acyclic pattern and nb = 5 , the teams’ interaction intensi-
ties are as follows: m1 = 0.66 , m2 = 0.53 , m3 = 0.4 , m4 = 0.26 , m5 = 0.13.

For each combination (PD setting and subsystems’ interaction pattern), we 
generate 100 landscapes. For each landscape, we create the corresponding PD 
project scenario (e.g., heterogonous core) and let teams conduct the search pro-
cess for 100-time periods. This process is repeated for each of the 100 landscapes. 
The performance at each simulation time is the average performance at that time 
period across all landscapes.

Fig. 6  The best quality performance of PD projects with (K = 1 and C = 1) . Note Communicative teams 
represented by solid and continuous line; diverse teams represented by dotted lines; heterogeneously 
structured teams developing peripheral represented by asterisks and heterogeneously structured teams 
developing core subsystems represented by dashes. (Color figure online)
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Graphs in Fig.  6 depict the best quality performance of PD projects ( PQt in 
Eq. 4).8 They show performance of PD projects with K = 1, C = 1 . According to 
the top panels, heterogeneous teams (i.e., heterogonous core, heterogonous periph-
eral) result in performance levels higher than or like that of diverse teams. In addi-
tion, panels at the bottom indicate that the former set of teams, i.e., with varied 
forms, tend to achieve higher performance levels than communicative teams. These 
observations are seen in the other PD projects (e.g., K = 3, C = 1 ) that are reported 
in the Online Appendix. Thus, in PD systems with high integration capability that 
can attain best quality performance levels, heterogeneous teams are expected to 
achieve superior best quality solutions than uniformly formed teams, e.g., diverse/
communicative teams.

Plots in Fig.  7 indicate that when firms can attain average quality perfor-
mance, heterogeneous teams have different performance courses, relative to that 

Fig. 7  The average quality performance of PD projects with (K = 1 and C = 1) . Note Communicative 
teams represented by solid and continuous line; diverse teams represented by dotted lines; heterogene-
ously structured teams developing peripheral represented by asterisks and heterogeneously structured 
teams developing core subsystems represented by dashes. (Color figure online)

8 For both Figs.  6 and 7, the following setting arrangements have been used. Subsystems interact in 
modular (blue), cyclical (green), and acyclical (red) patterns. Each point is the average performance of 
100 simulation runs, and nb = nq = 5;ne = 4.
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of uniformly formed teams, e.g., diverse/communicative teams. The performance 
graphs in the top panels show that using heterogeneous teams results in performance 
levels higher than using diverse teams. In addition, the bottom panels indicate that, 
in the short run, communicative teams achieve higher performance levels than that 
of heterogeneous teams. However, in the long run, the latter teams achieve higher 
performance than the former teams. These observations are seen in the other PD 
projects (e.g., K = 3,C = 1 ) that are reported in the Online Appendix. Thus, PD 
systems with low integration capability that can only achieve average quality per-
formance levels, using heterogeneous teams, in the long run, are likely to make 
superior average quality solutions than when deploying uniformly formed teams. 
However, in the short run, communicative teams tend to attain higher average qual-
ity solutions than heterogeneous teams (e.g., heterogonous core).

To examine the previous performance patterns, we have conducted paired t-tests. 
Again, as discussed earlier in the previous section, the observations in one sample 
(e.g., performance of a project with teams whose diversity increases in interaction) 
can be paired with observations in another sample (e.g., performance of a project 
with communicative teams). As discussed earlier, we used the average PD perfor-
mance in the last 10-time periods as a performance measure in our statistical tests. 
We have conducted four sets of paired t-tests. The null hypothesis for the first set 
of paired t-tests expects the mean of the best quality of a system with heterogonous 
core/peripheral systems to be equal to that of a system with diverse teams.9 Simi-
larly, the second test expects the mean of best quality of the former system to be 
equal to that of a system with communicative teams.

The results of the first and second paired t-tests are provided in Tables 4 and 5 for 
PD projects with nq = 5 designers in each team. The results show that heterogeneous 
teams (e.g., heterogonous core teams) achieve superior design solutions than that of 

Table 5  Paired t tests comparing 
the best quality performance of 
PD systems with heterogonous 
core teams with the so-called 
“X” PD systems

Asterisk indicates a 1% significance level

Inputs Pattern t value Pattern t value

“X” PD systems K C

Diverse 1 1 Cyclical 3.287* Acyclical 4.21*
1 3 − 0.156 1.662
3 1 1.227 2.803*
3 3 0.034 1.625

Communicative 1 1 8.925* 11.697 *
1 3 11.252* 12.507*
3 1 11.374* 12.795*
3 3 13.106* 13.676*

9 In other words, the first set of paired t tests, compare PQt in Eq. 4 of heterogonous core teams with that 
of diverse teams. Therefore, positive and negative t values indicate heterogonous core teams are doing, 
respectively, better and worse than diverse teams.
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communicative teams. However, in some PD settings, the best solutions of the for-
mer teams do not differ significantly from that of the diverse teams.10 An example of 
such settings is a PD project with acyclical subsystems interaction in some settings 
like K = 1,C = 2 . These are consistent with the results in Sect. 4.1 where diverse 
teams are expected to find superior best solutions than communicative teams.

The null hypothesis for the third paired t test expects the mean of average qual-
ity of systems with diverse teams developing core/peripheral systems to be equal to 
that of a system with diverse teams. Analogously, the fourth test expects the mean 
of average quality of the former systems to be equal to that of a system with com-
municative teams. For PD projects with nb = 7 designers in each team, these tests 

Table 6  Paired t tests comparing 
the best quality performance of 
PD systems with heterogonous 
peripheral teams with the 
so-called “X” PD systems

Asterisk indicates a 1% significance level

Inputs Pattern t value Pattern t value

“X” PD systems K C

Diverse 1 1 Cyclical 2.698* Acyclical 5.083*
1 3 1.62 2.532
3 1 − 0.034 4.289*
3 3 0.491 3.873*

Communicative 1 1 9.852* 12.78 *
1 3 11.84* 15.586*
3 1 12.92* 12.629*
3 3 15.036* 14.591*

Table 7  Paired t tests 
comparing the average quality 
performance of PD systems with 
heterogonous core teams with 
the so-called “X” PD systems

Note: asterisk indicates a 1% significance level

Inputs Pattern t value Pattern t value

“X” PD systems K C

Diverse 1 1 Cyclical 23.934* Acyclical 31.592*
1 3 32.815* 25.529*
3 1 24.05* 35.061*
3 3 32.018* 27.347*

Communicative 1 1 − 0.826 1.091
1 3 − 2.296 − 1.572
3 1 − 1.09 0.737
3 3 − 3.926* − 0.871

10 In the results provided in the Online Appendix, we observe somewhat different patterns for nb = 7 
designers in each team, and we speculate that this happens as higher number of agents are conducting 
searches over the landscape, and intuitively, that may shift the overall performance improvement rate of 
heterogeneous teams in comparison to that of the uniformly formed teams. It is worth noting, our overall 
insights are independent from these PD setting-related changes in results.
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results are presented in Tables 6, 7 and 8. They show that heterogeneous teams (e.g., 
diverse teams developing core subsystems) achieve higher average quality of solu-
tions than that of diverse teams. However, in some PD settings, the best solutions of 
the former teams do not differ significantly from that of the communicative teams. 
An example of such settings is a PD project with acyclical subsystems interaction in 
some settings like K = 1, C = 2.

Contemplating all four paired test results, depending on organizational integra-
tion capability level, heterogeneous teams may achieve higher performance than 
teams with uniform structures. When PD systems have high competency in inte-
grating designers’ solutions, then heterogeneous teams (e.g., diverse teams develop-
ing core) achieve superior design solutions than that of communicative teams. In 
addition, in PD projects have low integration capability, heterogeneous teams are 
expected to achieve higher performance than diverse teams. However, those heter-
ogeneous teams may have higher or similar design solutions than that of diverse 
teams, in PD projects with high integration capability, and that of communicative 
teams in projects with low integration competency.

In sum, our model expected higher performance levels for projects with heteroge-
neous teams that utilize both diverse and communicative teams. Those PD projects 
benefits from superior features of both communicative and diverse teams. Recall 
that, with uniformly formed communicative teams, when a superior design solu-
tion is found, it is quickly and effectively shared among designers. In addition, as 
discussed earlier, uniformly formed diverse teams utilize a broad collective search 
effort. Hence, projects that employ heterogeneous teams are likely to have a higher 
or, at least, similar, performance level to that of uniformly formed teams.

5  Discussion and conclusion

Organizations usually use teams as their means to conduct their PD projects. This 
paper proposed a model for investigating PD performance consequences of different 
team assembly strategies. Specifically, according to the social network literature, two 

Table 8  Paired t tests 
comparing the average quality 
performance of PD systems 
with heterogonous peripheral 
teams with the so-called “X” PD 
systems

Asterisk indicates a 1% significance level

Inputs Pattern t value Pattern t value

“X” PD systems K C

Diverse 1 1 Cyclical 24.459* Acyclical 16.743*
1 3 27.422* 20.899*
3 1 26.708* 22.105*
3 3 27.385* 22.327*

Communicative 1 1 − 3.42* − 5.452*
1 3 − 1.87 − 7.148*
3 1 − 2.057 − 6.42*
3 3 − 3.314* − 6.838*
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main team structures were studied. In one structure, with a sparse structure, which 
we refer to as diverse teams, team members interact with designers who mainly do 
not interact with each other. Alternatively, with a cohesive structure, or what we 
call communicative teams, designers interact in a densely connected pattern where 
common-third parties are common.

Generally, in an organizational context, and particularly in the PD area, either 
of the two team assembly strategies is argued to be associated with distinct perfor-
mance advantages (Coleman 1990; Obstfeld 2005; Sosa 2011; Burt 2004; Fleming 
et  al. 2007). Although, these general implications can guide PD managers, more 
research is needed to understand different PD team assembly strategies (Sosa and 
Marle 2013).

Disentangling the performance effects of product architecture or interaction pat-
terns among subsystems has been a critical topic (MacCormack et  al. 2006), and 
hence, we studied performance effects of team assembly strategies with different 
product architecture patterns. To that end, we considered three different architec-
tures, modular, cyclical and acyclical, that have been observed empirically (Baldwin 
and Clark 2000; MacCormack et al. 2006; Baldwin et al. 2014).

We also examined team-formation policies for PD projects with different com-
plexity levels as products can have design spaces with varying complexity levels 
or interdependencies among their elements (Fleming and Sorenson 2002). Gener-
ally, high NPD complexity creates challenges for managers that negatively impact 
performance such as profit margin (Tatikonda and Rosenthal 2000) and longer PD 
time (Griffin 1997). Theoretically, also, product complexity affects the relation-
ship between the level of centralization of the product design decisions and product 
performance (Giannoccaro and Nair 2016). Therefore, in our model, we varied the 
level of ruggedness of design space to investigate whether team-formation strategies 
affect PD performance in different ways.

We conceptualized the PD endeavor as collective problem solving. That is 
designers are simultaneously solving a set of interrelated problems (Thomke 1997). 
More precisely, each designer conducts either of the following two tasks at a time: 
(i) locally optimizing his own design task, or (ii) attending design interactions with 
the other tasks (Mihm et al. 2003).

From a performance perspective, we studied two performance measures to reflect 
different integration capability of firms. That differentiation between capable and 
incapable PD systems by using the best and average quality performance measures 
reflects what teams need to do: integrate knowledge in an ongoing process of mutual 
adjustment (Kozlowski et al. 1999; Gardner et al. 2012). The knowledge integration, 
in other words, makes some teams more effective than other teams by developing 
dynamic capabilities that enable the former teams to integrate knowledge in a sys-
tematic and reliable way (Gardner et al. 2012).

Our selection of two performance measures has no conflict with the fact that 
innovation success usually depends on the quality of the best identified opportunity 
(Girotra et al. 2010). More specifically, the best and average quality measures that 
are used in this paper, are built to differentiate PD projects based on their ability 
to find out the best design solutions which has been discussed both at the team and 
individual levels (Girotra et al. 2010).
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In this paper, we relied on simulation to develop a theory (e.g., March 1991; 
Strang and Macy 2001; and other examples in Harrison et al. 2007). Table 9 pro-
vides a summary of our results on the performance of PD teams that are all formed 
with a uniform strategy. Our results for projects where teams with similar social 
structures are utilized for all subsystems indicate that depending on the integration 
capability and costs, managers should use different strategies (the first and second 
rows of Table  9). If PD systems can efficiently integrate design solutions at low 
integration costs, diverse teams with high absorptive capacity should be assembled. 
However, with integration inefficiencies processes, managers should build commu-
nicative teams that, according to the average quality measure, tend to find design 
solutions with higher fitness values than those of the diverse teams.

Our results are in line with previous empirical observations and arguments. Previ-
ously, the differing consequences of spare networks with bridging ties and cohesive 
structures with strong ties are characterized as tension between “the idea problem” 
versus “the action problem” (Obstfeld 2005; Tiwana 2008). In other words, teams 
with cohesive structures, are capable of implementing innovative ideas, but are com-
petent to generate ideas. Comparably, diverse teams with a sparse structure have a 
high capacity to generate innovative ideas but they are deficient in implementing 
ideas. Such a trade-off has been seen in our results where communicative teams lost 
the potential to find the best quality solutions, and diverse teams missed the poten-
tial to have high average quality performance. In a similar perspective, and based on 
the creativity and decision-making literature, the designers’ social network structure 
has been argued to affect the NPD front-end process (Khurana and Rosenthal 1998), 
in which ideas are born and further developed, ending with the go/no-go decision 
(Kijkuit and Van Den Ende 2007). In particular, diverse-team strategy is expected 
to improve idea generation, whereas communicative-team formation enhances idea 
development and evaluation processes. Thus, we suggest the following proposition 
for future empirical research:

Proposition 1 If managers consider only a homogenous social structure for the 
teams (developing different subsystems); and integration capability is high (low), 
forming/using diverse (communicative) teams is advised.

Managers in PD projects may consider using teams with heterogeneous social 
structures. Our results in Table 9 provide a simple guideline on when such con-
sideration is expected to result in higher PD performance than strategies that form 

Table 9  Comparing different team-formation strategies

Team formation Integration capability Superior strategy

Uniform High (capable) Diverse teams
Low (incapable) Communicative teams

Heterogeneous-uniform High (capable) Heterogeneous > communicative ( ≥ diverse)
Low (incapable) Heterogeneous > diverse ( ≥ communicative)
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teams uniformly (the last two rows of Table 9). If PD systems can efficiently inte-
grate design solutions at low integration costs, then heterogeneous teams attain a 
superior best design solution than that of communicative teams. However, those 
variously formed teams are expected to have a superior or similar best design 
solution as that of diverse teams. When integration processes are afflicted with 
inefficiencies, teams with heterogeneous social structures achieve higher aver-
age design solutions than that of diverse teams. Moreover, the former PD team 
arrangements attain higher than or similar to, the average design solutions of 
communicative teams.

In summary, our model expects higher performance levels for PD projects that 
employ both diverse and communicative teams (see Table 9). This is consistent 
with the body of research on association of social network features and innova-
tion performance. For instance, Zhou et al. (2009) investigated a high-tech firm 
in China, and found that too many or too few weak ties [that connect to differ-
ent social circles and are a source of non-redundant information (Granovetter 
1973)] negatively affect creativity, and they suggested an inverted U-relationship 
between the number of weak ties and creativity. Similarly, studies at the indi-
vidual level (Schultz and Schreyogg 2013), project level (Tiwana 2008), and firm 
level (Capaldo 2007) confirm that a combination of weak ties (frequently present 
in our diverse teams) and strong ties (frequently present in our communicative 
teams) positively influence innovation performance.

Our results of expected higher performance of the heterogeneous teams, in 
comparison to that of uniformly formed teams, is also in line with arguments on 
the small world fostering creativity (Fleming and Marx 2006). The small world 
structures benefit from both bridging ties and cohesive clusters that facilitate 
diffusion of new ideas and create more new inventions, which will diffuse more 
quickly. Similarly, in the organizational context, groups with modest amounts of 
cross-group linking (i.e., low but nonzero levels) are found associated with higher 
equilibrium performance levels (Fang et al. 2010). Thus, we provide the follow-
ing set of propositions for future empirical research:

Proposition 2 If managers consider both homogenous and heterogenous social 
structures for the teams (developing different subsystems); and integration capabil-
ity is high, forming/using either of the heterogenous and diverse teams is advised.

Proposition 3 If managers consider both homogenous and heterogenous social 
structures for the teams (developing different subsystems); and integration capa-
bility is low, forming/using either of the heterogenous and communicative teams is 
advised.

Our work has some implications for the literature on NK landscape search 
where managerial decision-making problems (e.g., organization design, strategy 
planning) are conceptualized as problems for which the effective combinations 
of several interdependent variables should be found (Levinthal 1997; Katila and 
Ahuja 2002; Billinger et al. 2013). A stream of this research investigates how the 
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search process features can have significant performance effects for problem solv-
ing in complex settings (Fleming 2001; Nickerson and Zenger 2004). Expansion 
of the search domain (Baumann and Siggelkow 2013), organizational structure 
(Knudsen and Levinthal 2007; Mihm et al. 2010), and interpersonal organization 
network (Lazer and Friedman 2007; Fang et al. 2010) are examples of such search 
process features. We add to this line of research by considering agents’ commu-
nication effectiveness and expertise distribution in an interpersonal organization 
network. In particular, we have found that capable organizations should arrange 
their organizational structure using diverse teams who have high absorptive 
capacity. Conversely, organizations with high integration inefficiencies, should 
use communicative, and less diverse teams.

We conclude by discussing some limitations of our work and future research pos-
sibilities. First, the NK landscape model imposes some limitations on the number of 
teams and subsystems that we could include in our experiments, and feature research 
can validate our results by using alternative models like the recently developed NM 
landscape models (Buzas and Dinitz 2014; Manukyan et al. 2016) or organizational 
generalized pay-off functions (Fang et al. 2010; Schilling and Fang 2014), by which 
large landscape models, e.g., N = 50, 100 can be built.

Second, since a limited number of design elements could have been used in the 
NK landscape, we used the connected caveman model (Watts 1999) with a fixed 
structure. However, empirical research has shown that designers’ interactions follow 
scale free properties—with a power of law degree distribution—and, those interac-
tions are not equally distributed among all designers (Braha and Bar-Yam 2004). 
Hence, a few designers have a large number of interactions, while the other ones 
have only few relationships.

Lastly, we assumed the PD process is simultaneously executed for all subsystems. 
However, from a temporal perspective, PD work might be front-loaded (Thomke and 
Fujimoto 2000), where problems are mainly solved in the early stage. Alternatively, 
the process can be back-loaded (Fixson and Marion 2012), with a large portion of 
problems being solved at the later stage of PD process. Investigating whether either 
of these temporal features affect the performance effects of team-formation strate-
gies can be a promising opportunity for future research.
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