Skip to main content
Log in

A Smoothing Newton-Type Algorithm of Stronger Convergence for the Quadratically Constrained Convex Quadratic Programming

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper we propose a smoothing Newton-type algorithm for the problem of minimizing a convex quadratic function subject to finitely many convex quadratic inequality constraints. The algorithm is shown to converge globally and possess stronger local superlinear convergence. Preliminary numerical results are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bakushinsky and A. Goncharsky, Ill-Posed Problems: Theory and Applications, Kluwer Academic Publishers, Boston, 1989.

    Google Scholar 

  2. F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

    MATH  Google Scholar 

  3. F. Cole, J.G. Ecker, and W. Gochet, “A reduced gradient method for quadratic programs with quadratic constraints and l p -constrained l p -approximation problems,” European J. Oper. Res., vol. 9, pp. 194–203, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Engelke and C. Kanzow, “Predictor-corrector smoothing methods for the solution of linear programming,” Preprint, Department of Mathematics, University of Hamburg, Germany, 2000.

  5. S. Engelke and C. Kanzow, “Improved smoothing-type methods for the solution of linear programming,” Numer. Math., vol. 90, pp. 487–507, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Facchnei, A. Fischer, and C. Kanzow, “On the accurate identification of active constrains,” SIAM J. Optim., vol. 9, pp. 14–32, 1998.

    Article  Google Scholar 

  7. F. Facchnei and C. Kanzow, “Beyond monotonicity in regularization methods for nonlinear complementarity problems,” SIAM J. Control Optim., vol. 37, pp. 1150–1161, 1999.

    Article  MathSciNet  Google Scholar 

  8. F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume II. Springer-Verlag, New York, 2003.

    Google Scholar 

  9. A. Fischer, “Solution of monotone complementarity problems with Lipschitzian functions,” Math. Program., vol. 76, pp. 513–532, 1997.

    Article  MATH  Google Scholar 

  10. A. Fischer, “Local beharior of an iterative framework for generalized equations with nonisolated solutions,” Math. Program., vol. 94, pp. 91–124, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  11. M.S. Gowda and J.J. Sznajder, “Weak univalence and connectedness of inverse images of continuous functions,” Math. Oper. Res., vol. 24, pp. 255–261, 1999.

    MATH  MathSciNet  Google Scholar 

  12. Z.H. Huang, “Sufficient conditions on nonemptiness and boundedness of the solution set of the P 0 function nonlinear complementarity problem,” Oper. Res. Letters, vol. 30, pp. 202–210, 2002.

    Article  MATH  Google Scholar 

  13. Z.H. Huang, J. Han, and Z. Chen, “A predictor-corrector smoothing Newton algorithm, based on a new smoothing function, for solving the nonlinear complementarity problem with a P 0 function,” J. Optim. Theory Appl., vol. 117, pp. 39–68, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  14. Z.H. Huang, L. Qi, and D. Sun, “Sub-quadratic convergence of a smoothing Newton algorithm for the P 0- and monotone LCP,” Math. Program., vol. 99, pp. 423–441, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Karamardian, “Complementarity problems over cones with monotone and pseudomonotone maps,” J. Optim. Theory Appl., vol. 18, pp. 445–454, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Kojima, “Strongly stable stationary solutions in nonlinear programs,” in S.M. Robinson (ed.), Analysis and Computation of Fixed Points, Academic Press, New York, pp. 93–138, 1980.

    Google Scholar 

  17. M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebert, “Applications of second-order cone programming,” Linear Algebra Appl., vol. 284, pp. 193–228, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Mclinden, “Stable monotone variational inequalities,” Math. Program., vol. 48, pp. 303–338, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Mifflin, “ Semismooth and semiconvex functions in constrained optimization,” SIAM J. Control Optim., vol. 15, pp. 957–972, 1977.

    Article  MathSciNet  Google Scholar 

  20. S. Mizuno, “A superlinearly convergent infeasible-interior-point algorithm for geometrical LCPs without strictly complementary condition,” Math. Oper. Res., vol. 21, pp. 382–400, 1996.

    MATH  MathSciNet  Google Scholar 

  21. Y.E. Nesterov and A.S. Nemirovskii, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM, Philadelphia, PA, 1994.

  22. E. Polak, Optimization: Algorithms and Consistent Approximations, New York, Springer-Verlag, 1997.

    MATH  Google Scholar 

  23. E. Polak, L. Qi, and D. Sun, “Second-order algorithm for generalized finite and semi-infinite min-max problems,” SIAM J. Optim., vol. 11, pp. 937–961, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  24. H.D. Qi, “A regularized smoothing Newton method for box constrained variational inequality problems with P 0-functions,” SIAM J. Optim., vol. 10, pp. 315–330, 2000.

    Article  MathSciNet  Google Scholar 

  25. L. Qi and J. Sun, “A nonsmooth version of Newton’s method,” Math. Program., vol. 58, pp. 353–367, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  26. L. Qi, D. Sun, and G. Zhou, “A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems,” Math. Program., vol. 87, pp. 1–35, 2000.

    MATH  MathSciNet  Google Scholar 

  27. D. Ralph and S.J. Wright, “Superlinear convergence of an interior point method for monotone variational inequalities,” Complementarity and Variational Problems: State of the Art, SIAM, pp. 345–385, 1997.

  28. D. Ralph and S.J. Wright, “Superlinear convergence of an interior point method despite dependent constraints,” Math. Oper. Res., vol. 25, pp. 179–194, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  29. G. Ravindran and M.S. Gowda, “Regularization of P 0−functions in box variational inequality problems,” SIAM J. Optim., vol. 11, pp. 748–760, 2001.

    Article  MathSciNet  Google Scholar 

  30. S.M. Robinson, “Normal maps induced by linear transformation,” Math. Oper. Res., vol. 17, pp. 691–714, 1992.

    MATH  MathSciNet  Google Scholar 

  31. J. Stoer, M. Weches, and S. Mizuno, “Hight order infeasible-interior-point methods for solving sufficient linear complementarity problems,” Math. Oper. Res., vol. 23, pp. 832–862, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  32. J.F. Sturm, “Superlinear convergence of an algorithm for monotone linear complementarity problems, when no strictly complementary solution exists,” Math. Oper. Res., vol. 24, pp. 72–94, 1999.

    MATH  MathSciNet  Google Scholar 

  33. D. Sun, “A regularization Newton method for solving nonlinear complementarity problems,” Appl. Math. Optim., vol. 36, pp. 315–339, 1999.

    Article  Google Scholar 

  34. J. Sun and G. Zhao, “Quadratic convergence of a long-step interior point method for nonlinear monotone variational inequality problems,” J. Optim. Theory Appl., vol. 97, pp. 471–491, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Tseng, “Error bounds and superlinear convergence analysis of some Newton-type methods in optimization,” in Nonlinear Optimization and Related Topics, Di G. Pillo and F. Giannessi (eds.), Kluwer Academic Publishers, Boston, pp. 445–462, 2000.

  36. S.J. Wright, Primal-Dual Interior Methods. SIAM, Philadelphia, 1997.

  37. N. Yamashita and M. Fukushima, “On the rate of convergence of the Levenberg-Marquardt method,” Computing[Suppl], vol. 15, pp. 239–249, 2001.

    MATH  MathSciNet  Google Scholar 

  38. Y. Ye and K. Anstreicher, “On quadratic and O(\(n\) L) convergence of a predictor-corrector algorithm for LCP,” Math. Program., vol. 62, pp. 537–552, 1993.

  39. Y. Ye, O. Güler, R.A. Tapia, and Y. Zhang, “A quadratically convergent O(\(n\) L)-iteration algorithm for linear programming,” Math. Program., vol. 59, pp. 151–162, 1993.

    Article  MATH  Google Scholar 

  40. Y. Zhang, R.A. Tapia, and J.E. Dennis, “On superlinear and quadratic convergence of primal-dual interior point linear programming algorithms.” SIAM J. Optim., vol. 2, pp. 304–324, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  41. G. Zhao and J. Sun, “On the rate of local convergence of high-order infeasible-path-following algorithms for P_*-LCP with or without strictly complementary solutions,” Comput. Optim. Appl., vol. 14, pp. 293–307, 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hai Huang.

Additional information

Mathematics Subject Classification (1991): 90C33, 65K10

This author’s work was also partially supported by the Scientific Research Foundation of Tianjin University for the Returned Overseas Chinese Scholars and the Scientific Research Foundation of Liu Hui Center for Applied Mathematics, Nankai University-Tianjin University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, ZH., Sun, D. & Zhao, G. A Smoothing Newton-Type Algorithm of Stronger Convergence for the Quadratically Constrained Convex Quadratic Programming. Comput Optim Applic 35, 199–237 (2006). https://doi.org/10.1007/s10589-006-6512-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-006-6512-7

Keywords

Navigation