Skip to main content
Log in

Approximate and exact algorithms for the double-constrained two-dimensional guillotine cutting stock problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose approximate and exact algorithms for the double constrained two-dimensional guillotine cutting stock problem (DCTDC). The approximate algorithm is a two-stage procedure. The first stage attempts to produce a starting feasible solution to DCTDC by solving a single constrained two dimensional cutting problem, CDTC. If the solution to CTDC is not feasible to DCTDC, the second stage is used to eliminate non-feasibility. The exact algorithm is a branch-and-bound that uses efficient lower and upper bounding schemes. It starts with a lower bound reached by the approximate two-stage algorithm. At each internal node of the branching tree, a tailored upper bound is obtained by solving (relaxed) knapsack problems. To speed up the branch and bound, we implement, in addition to ordered data structures of lists, symmetry, duplicate, and non-feasibility detection strategies which fathom some unnecessary branches. We evaluate the performance of the algorithm on different problem instances which can become benchmark problems for the cutting and packing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, B.S., Coffman, E.G. Jr., Rivest, R.L.: Orthogonal packing in two dimensions. SIAM J. Comput. 9, 846–855 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beasley, J.E.: Algorithms for unconstrained two-dimensional guillotine cutting. J. Oper. Res. Soc. 36, 297–306 (1985)

    MATH  Google Scholar 

  3. Belov, G., Scheithauer, G.: A branch-and-cut-and-price algorithm for one-dimensional stock cutting and two-dimensional two-stage cutting. Eur. J. Oper. Res. 171, 85–106 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blazewicz, J., Moret-Salvador, A., Walkowiak, R.: Parallel tabu search approaches for two-dimensional cutting. Parallel Process. Lett. 14, 23–32

  5. Bortfeldt, A.: A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces. Eur. J. Oper. Res. (2005), available online

  6. Caprara, A., Monaci, M.: On the 2-dimensional knapsack problems. Oper. Res. Lett. 32, 5–14 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Christofides, N., Whitlock, C.: An algorithm for two-dimensional cutting problems. Oper. Res. 25, 31–44 (1977)

    Article  Google Scholar 

  8. Christofides, N., Hadjiconstantinou, E.: An exact algorithm for orthogonal 2-D cutting problems using guillotine cuts. Eur. J. Oper. Res. 83, 21–38 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cui, Y.: Generating optimal T-shape cutting patterns for rectangular blanks. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 218/B8, 857–866 (2004)

    Article  Google Scholar 

  10. Cui, Y., Wang, Z., Li, J.: Exact and heuristic algorithms for staged cutting problems. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 219/B2, 201–208 (2005)

    Article  Google Scholar 

  11. Cung, V.-D., Hifi, M.: Handling lower bound constraints in two-dimensional cutting problems. In: ISMP 2000, The 17th Symposium on Mathematical Programming, Atlanta, 7–11 August 2000

  12. Cung, V.-D., Hifi, M., Le Cun, B.: Constrained two-dimensional cutting stock problems: a best-first branch-and-bound algorithm. Int. Trans. Oper. Res. 7, 185–210 (2000)

    Article  MathSciNet  Google Scholar 

  13. Cung, V.-D., Hifi, M., Le Cun, B.: Constrained two-dimensional cutting stock problems: the NMVB approach and the duplicate test revisited. Working Paper, Série Bleue No 2000.127 (CERMSEM), Maison des Sciences Economiques, Université Paris 1 (2000)

  14. Dyckhoff, H.: A typology of cutting and packing problems. Eur. J. Oper. Res. 44, 145–159 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dikili, A.C.: A new approach for the solution of the two-dimensional guillotine-cutting problem in ship production. Ocean Eng. 31, 1193–1203 (2004)

    Article  Google Scholar 

  16. Fayard, D., Zissimopoulos, V.: An approximation algorithm for solving unconstrained two-dimensional knapsack problems. Eur. J. Oper. Res. 84, 618–632 (1995)

    Article  MATH  Google Scholar 

  17. Fayard, D., Hifi, M., Zissimopoulos, V.: An efficient approach for large-scale two-dimensional guillotine cutting stock problems. J. Oper. Res. Soc. 49, 1270–1277 (1998)

    Article  MATH  Google Scholar 

  18. Fekete, S.P., Schepers, J.: A general framework for bounds for higher-dimensional orthogonal packing problems. Math. Method. Oper. Res. 60, 311–329 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gilmore, P., Gomory, R.: Multistage cutting problems of two and more dimensions. Oper. Res. 13, 94–119 (1965)

    Article  MATH  Google Scholar 

  20. Gilmore, P., Gomory, R.: The theory and computation of knapsack functions. Oper. Res. 14, 1045–1074 (1966)

    Article  MathSciNet  Google Scholar 

  21. Herz, J.C.: A recursive computing procedure for two-dimensional stock cutting. IBM J. Res. Dev. 16, 462–469 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hifi, M.: An improvement of Viswanathan and Bagchi’s exact algorithm for cutting stock problems. Comput. Oper. Res. 24, 727–736 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hifi, M., M’Hallah, R.: Strip generation algorithms for two-staged two-dimensional cutting stock problems. Eur. J. Oper. Res. 172, 515–527 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hifi, M., M’Hallah, R.: An exact algorithm for constrained two-dimensional two-staged cutting problems. Oper. Res. 53, 140–150 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hifi, M., Zissimopoulos, V.: A recursive exact algorithm for weighted two-dimensional cutting. Eur. J. Oper. Res. 91, 553–564 (1996)

    Article  MATH  Google Scholar 

  26. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004). ISBN:3-540-40286-1

    MATH  Google Scholar 

  27. Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: A survey. Eur. J. Oper. Res. 141, 241–252 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lodi, A., Monaci, M.: Integer linear programming models for 2-staged two-dimensional Knapsack problems. Math. Program. 94, 257–278 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Morabito, R., Arenales, M.: Staged and constrained two-dimensional guillotine cutting problems: An and/or-graph approach. Eur. J. Oper. Res. 94, 548–560 (1996)

    Article  MATH  Google Scholar 

  30. Mumford-Valenzuela, C.L., Vick, J., Wang, P.Y.: Heuristics for large strip packing problems with guillotine patterns: An empirical study. In: Metaheuristics: Computer Decision-Making, pp. 501–522. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  31. Suliman, S.M.A.: A sequential heuristic procedure for the two-dimensional cutting-stock problem. Int. J. Prod. Econ. 99, 177–185 (2006)

    Article  Google Scholar 

  32. Viswanathan, K.V., Bagchi, A.: Best-first search methods for constrained two-dimensional cutting stock problems. Oper. Res. 41, 768–776 (1993)

    Article  MATH  Google Scholar 

  33. Wang, P.Y.: Two algorithms for constrained two-dimensional cutting stock problems. Oper. Res. 31, 573–586 (1983)

    Article  MATH  Google Scholar 

  34. Wäescher, G., Haussner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183, 1109–1130 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hifi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hifi, M., M’Hallah, R. & Saadi, T. Approximate and exact algorithms for the double-constrained two-dimensional guillotine cutting stock problem. Comput Optim Appl 42, 303–326 (2009). https://doi.org/10.1007/s10589-007-9081-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9081-5

Keywords

Navigation