Skip to main content
Log in

Heuristics for the facility location and design (1|1)-centroid problem on the plane

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A chain (the leader) wants to set up a single new facility in a planar market where similar facilities of a competitor (the follower), and possibly of its own chain, are already present. The follower will react by locating another single facility after the leader locates its own facility. Fixed demand points split their demand probabilistically over all facilities in the market in proportion to their attraction to each facility, determined by the different perceived qualities of the facilities and the distances to them, through a gravitational model. Both the location and the quality (design) of the new leader’s facility are to be found. The aim is to maximize the profit obtained by the leader following the follower’s entry. Four heuristics are proposed for this hard-to-solve global optimization problem, namely, a grid search procedure, an alternating method and two evolutionary algorithms. Computational experiments show that the evolutionary algorithm called UEGO_cent.SASS provides the best results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benati, S., Laporte, G.: Tabu search algorithms for the (r|{X} p )-medianoid and (r|p)-centroid problems. Location Sci. 2(4), 193–204 (1994)

    MATH  Google Scholar 

  2. Bhadury, J., Eiselt, H.A., Jaramillo, J.H.: An alternating heuristic for medianoid and centroid problems in the plane. Comput. Oper. Res. 30(4), 553–565 (2003)

    Article  MATH  Google Scholar 

  3. Drezner, T.: Optimal continuous location of a retail facility, facility attractiveness, and market share: an interactive model. J. Retail. 70(1), 49–64 (1994)

    Article  Google Scholar 

  4. Drezner, T.: Location of multiple retail facilities with limited budget constraints in continuous space. J. Retail. Consum. Serv. 5(3), 173–184 (1998)

    Article  Google Scholar 

  5. Drezner, T., Drezner, Z.: Facility location in anticipation of future competition. Location Sci. 6(1), 155–173 (1998)

    Article  Google Scholar 

  6. Drezner, T., Drezner, Z.: Retail facility location under changing market conditions. IMA J. Manag. Math. 13(4), 283–302 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Drezner, T., Drezner, Z.: Finding the optimal solution to the Huff based competitive location model. Comput. Manag. Sci. 1(2), 193–208 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Drezner, Z.: Competitive location strategies for two facilities. Reg. Sci. Urban Econ. 12(4), 485–493 (1982)

    Article  Google Scholar 

  9. Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer, Berlin (1995)

    Google Scholar 

  10. Drezner, Z., Hamacher, H.W.: Facility Location. Applications and Theory. Springer, Berlin (2002)

    MATH  Google Scholar 

  11. Eiselt, H.A., Laporte, G.: Sequential location problems. Eur. J. Oper. Res. 96(2), 217–231 (1997)

    Article  MATH  Google Scholar 

  12. Eiselt, H.A., Laporte, G., Thisse, J.F.: Competitive location models: a framework and bibliography. Transp. Sci. 27(1), 44–54 (1993)

    Article  MATH  Google Scholar 

  13. Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Solving a Huff-like competitive location and design model for profit maximization in the plane. Eur. J. Oper. Res. 179(3), 1274–1287 (2007)

    Article  MATH  Google Scholar 

  14. Francis, R.L., McGinnis, L.F., White, J.A.: Facility Layout and Location: An Analytical Approach. Prentice Hall, Englewood Cliffs (1992)

    Google Scholar 

  15. González-Linares, J.M., Guil, N., Zapata, E.L., Ortigosa, P.M., García, I.: Deformable shapes detection by stochastic optimization. In: 2000 IEEE International Conference on Image Processing (ICIP’2000). Vancouver, Canada, 2000

  16. Hakimi, S.L.: On locating new facilities in a competitive environment. Eur. J. Oper. Res. 12(1), 29–35 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hodgson, M.J.: A location–allocation model maximizing consumers’ welfare. Reg. Stud. 15(6), 493–506 (1981)

    Article  Google Scholar 

  18. Huff, D.L.: Defining and estimating a trading area. J. Mark. 28(3), 34–38 (1964)

    Article  MathSciNet  Google Scholar 

  19. Kilkenny, M., Thisse, J.F.: Economics of location: a selective survey. Comput. Oper. Res. 26(14), 1369–1394 (1999)

    Article  MATH  Google Scholar 

  20. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  21. Love, R.F., Morris, J.G., Wesolowsky, G.O.: Facilities Location. Models and Methods. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  22. Okabe, A., Suzuki, A.: Stability of spatial competition for a large number of firms on a bounded two-dimensional space. Environ. Plan. A 19(8), 1067–1082 (1987)

    Article  Google Scholar 

  23. Ortigosa, P.M., García, I., Jelasity, M.: Reliability and performance of UEGO, a clustering-based global optimizer. J. Glob. Optim. 19(3), 265–289 (2001)

    Article  MATH  Google Scholar 

  24. Plastria, F.: Static competitive facility location: an overview of optimisation approaches. Eur. J. Oper. Res. 129(3), 461–470 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Plastria, F., Carrizosa, E.: Optimal location and design of a competitive facility. Math. Program. 100(2), 247–265 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Redondo, J.L., Fernández, J., García, I., Ortigosa, P.M.: A robust and efficient global optimization algorithm for planar competitive location problems. Ann. Oper. Res. (2008, to appear). DOI: 10.1007/s10479-007-0233-x

    Google Scholar 

  27. Redondo, J.L., Ortigosa, P.M., García, I., Fernández, J.J.: Image registration in electron microscopy. A stochastic optimization approach. In: Proceedings of the International Conference on Image Analysis and Recognition, ICIAR 2004. Lecture Notes in Computer Science, vol. 3212(II), pp. 141–149 (2004)

  28. Solis, F.J., Wets, R.J.B.: Minimization by random search techniques. Math. Oper. Res. 6(1), 19–30 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  29. Weber, A.: Uber den Standort der Industrien 1. Teil: Reine Theorie des Standortes. Tübingen, Niemeyer (1909)

    Google Scholar 

  30. Weiszfeld, E.: Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Math. J. 43, 355–386 (1937)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fernández.

Additional information

This paper has been sponsored by the Ministry of Education and Science of Spain under the research projects SEJ2005-06273/ECON and TIN2005-00447, in part financed by the European Regional Development Fund (ERDF).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redondo, J.L., Fernández, J., García, I. et al. Heuristics for the facility location and design (1|1)-centroid problem on the plane. Comput Optim Appl 45, 111–141 (2010). https://doi.org/10.1007/s10589-008-9170-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-008-9170-0

Keywords

Navigation