Skip to main content
Log in

A truncated Newton method in an augmented Lagrangian framework for nonlinear programming

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper we propose a primal-dual algorithm for the solution of general nonlinear programming problems. The core of the method is a local algorithm which relies on a truncated procedure for the computation of a search direction, and is thus suitable for large scale problems. The truncated direction produces a sequence of points which locally converges to a KKT pair with superlinear convergence rate.

The local algorithm is globalized by means of a suitable merit function which is able to measure and to enforce progress of the iterates towards a KKT pair, without deteriorating the local efficiency. In particular, we adopt the exact augmented Lagrangian function introduced in Pillo and Lucidi (SIAM J. Optim. 12:376–406, 2001), which allows us to guarantee the boundedness of the sequence produced by the algorithm and which has strong connections with the above mentioned truncated direction.

The resulting overall algorithm is globally and superlinearly convergent under mild assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsekas, D.P.: Constrained Optimization and Lagrange Multipliers Methods. Academic Press, San Diego (1982)

    Google Scholar 

  2. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1995)

    MATH  Google Scholar 

  3. Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. Ser. A 89, 149–185 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior point algorithm for large-scale nonlinear programming. SIAM J. Optim. 9, 877–900 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Byrd, R.H., Schnabel, R.B., Shultz, G.A.: A trust region algorithm for nonlinearly constrained optimization. SIAM J. Numer. Anal. 24, 1152–1170 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Di Pillo, G., Grippo, L.: A class of continuously differentiable exact penalty function algorithms for nonlinear programming problems. In: Toft-Christensen, E. (ed.) System Modelling and Optimization. Springer, Berlin (1984)

    Google Scholar 

  7. Di Pillo, G., Grippo, L.: An exact penalty method with global convergence properties. Math. Program. 36, 1–18 (1986)

    Article  Google Scholar 

  8. Di Pillo, G., Grippo, L.: Exact penalty functions in constrained optimization. SIAM J. Control Optim. 27, 1333–1360 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Di Pillo, G., Lucidi, S.: An augmented Lagrangian function with improved exactness properties. SIAM J. Optim. 12, 376–406 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Di Pillo, G., Liuzzi, G., Lucidi, S., Palagi, L.: A truncated Newton method in an augmented Lagrangian framework for nonlinear programming. Technical Report 09-07, Department of Computer and System Sciences, University of Rome “La Sapienza”, Rome, Italy (2007). Available for download at URL http://www.dis.uniroma1.it/~liuzzi/papers/TR09_07.pdf

  11. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. Ser. A 91, 201–213 (2002)

    Article  MATH  Google Scholar 

  12. Facchinei, F.: Minimization of SC1 functions and the Maratos effect. Oper. Res. Lett. 17, 131–137 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Facchinei, F., Lucidi, S.: Quadratically and superlinearly convergent algorithms for the solution of inequality constrained minimization problems. J. Optim. Theory Appl. 85, 265–289 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fletcher, R., Gould, N.I.M., Leyffer, S., Toint, Ph.L., Wachter, A.: Global convergence of trust-region SQP-filter algorithms for general nonlinear programming. SIAM J. Optim. 13, 635–659 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. 91, 239–270 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Forsgren, A., Gill, P.E.: Primal-dual interior methods for nonconvex nonlinear programming. SIAM J. Optim. 8, 1132–1152 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gay, D.M., Overton, M.L., Wright, M.H.: A primal-dual interior method for nonconvex nonlinear programming. In: Yuan, Y. (ed.) Advances in Nonlinear Programming. Kluwer Academic, Dordrecht (1998)

    Google Scholar 

  18. Gill, P.E., Murray, W., Saunders, M.A.: \(\mathsf{SNOPT}\) : an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 9, 979–1006 (2001)

    MathSciNet  Google Scholar 

  19. Glad, T., Polak, E.: A multiplier method with automatic limitation of penalty growth. Math. Program. 17, 140–155 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr and SifDec: a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29, 373–394 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Grippo, L., Lampariello, F., Lucidi, S.: A truncated Newton method with nonmonotone line search for unconstrained optimization. J. Optim. Theory Appl. 60, 401–419 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. Grippo, L., Lampariello, F., Lucidi, S.: A class of nonmonotone stabilization methods in unconstrained optimization. Numer. Math. 59, 779–805 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Guddat, J., Guerra Vasquez, F., Jongen, H.Th.: Parametric Optimization: Singularities, Pathfollowing and Jumps. Wiley, New York (1990)

    MATH  Google Scholar 

  24. Lucidi, S.: New results on a continuously differentiable exact penalty function. SIAM J. Optim. 2, 558–574 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Orthega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, San Diego (1970)

    Google Scholar 

  26. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MathSciNet  Google Scholar 

  27. Shanno, D.F., Vanderbei, R.J.: An interior point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13, 231–252 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wachter, A., Biegler, L.T.: Global and local convergence of line search filter methods for nonlinear programming. Technical Report B-01-09, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA (2001)

  29. Yabe, H., Yamashita, H.: Superlinear and quadratic convergence of some primal-dual interior point methods for constrained optimization. Math. Program. 75, 377–397 (1996)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Di Pillo.

Additional information

This work has been supported by MIUR-PRIN 2005 Research Program on New Problems and Innovative Methods in Nonlinear Optimization.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Pillo, G., Liuzzi, G., Lucidi, S. et al. A truncated Newton method in an augmented Lagrangian framework for nonlinear programming. Comput Optim Appl 45, 311–352 (2010). https://doi.org/10.1007/s10589-008-9216-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-008-9216-3

Keywords

Navigation