Skip to main content
Log in

Residual algorithm for large-scale positive definite generalized eigenvalue problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In the positive definite case, the extreme generalized eigenvalues can be obtained by solving a suitable nonlinear system of equations. In this work, we adapt and study the use of recently developed low-cost derivative-free residual schemes for nonlinear systems, to solve large-scale generalized eigenvalue problems. We demonstrate the effectiveness of our approach on some standard test problems, and also on a problem associated with the vibration analysis of large structures. In our numerical results we use preconditioning strategies based on incomplete factorizations, and we compare with and without preconditioning with a well-known available package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baglama, J., Calvetti, D., Reichel, L., Ruttan, A.: Computation of a few small eigenvalues of a large matrix with application to liquid crystal modeling. J. Comput. Phys. 146, 203–226 (1998)

    Article  MATH  Google Scholar 

  2. Bello, L.: Gradiente espectral precondicionado sobre convexos y algunos casos de estudio. Doctoral Thesis, Universidad Central de Venezuela, Caracas, Venezuela (2007)

  3. Bello, L., Raydan, M.: Preconditioned spectral projected gradient method on convex sets. J. Comput. Math. 22, 4–49 (2005)

    MathSciNet  Google Scholar 

  4. Birgin, E.G., Martínez, J.M.: Large-scale active-set box-constrained optimization methods with spectral projected gradients. Comput. Optim. Appl. 23, 101–125 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Opt. 10, 1196–1211 (2000)

    Article  MATH  Google Scholar 

  6. Birgin, E.G., Martínez, J.M., Raydan, M.: Algorithm 813: SPG—software for convex-constrained optimization. ACM Trans. Math. Softw. 27, 340–349 (2001)

    Article  MATH  Google Scholar 

  7. Bradbury, W.W., Fletcher, R.: New iterative methods for solution of the eigenproblem. Numer. Math. 9, 259–267 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bramble, J.H., Pasciak, J.E., Knyazev, A.V.: A subspace preconditioning algorithm for eigenvector/eigenvalue computation. Adv. Comput. Math. 6, 159–189 (1996)

    Article  MathSciNet  Google Scholar 

  9. Costa, A.P., Figueiredo, I.N., Júdice, J., Martins, J.A.C.: The directional instability problem in systems with frictional contacts. Comput. Methods Appl. Mech. Eng. 193, 357–384 (2004)

    Article  MATH  Google Scholar 

  10. Dai, Y.H.: Fast algorithms for projection on an ellipsoid. SIAM J. Opt. 16, 986–1006 (2006)

    Article  MATH  Google Scholar 

  11. Datta, B.N.: Numerical Linear Algebra and Applications. Brooks/Cole, Pacific Grove (1995)

    MATH  Google Scholar 

  12. Datta, B.N.: Numerical Methods for Linear Control Systems Design and Analysis. Elsevier, Amsterdam (2003)

    Google Scholar 

  13. Duff, I., Grimes, R., Lewis, J.: Sparse matrix test problems. ACM Trans. Math. Softw. 15, 1–14 (1989)

    Article  MATH  Google Scholar 

  14. Hestenes, M.R., Karush, W.: A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix. J. Res. Nat. Bureau Stand. 47, 45–61 (1951)

    MathSciNet  Google Scholar 

  15. Inman, D.J.: Engineering Vibration. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  16. Júdice, J.J., Ribeiro, I., Sherali, H.: The eigenvalue complementarity problem. Comput. Optim. Appl. 37, 139–156 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. La Cruz, W., Raydan, M.: Nonmonotone spectral methods for large-scale nonlinear systems. Optim. Methods Softw. 18, 583–599 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. La Cruz, W., Martínez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems. Math. Comput. 75, 1449–1466 (2006)

    Article  Google Scholar 

  19. McCormick, S.F.: Some convergence results on the method of gradients for Ax=λ Bx. J. Comput. Syst. Sci. 13, 213–222 (1976)

    MATH  MathSciNet  Google Scholar 

  20. Neymeyr, K.: A posteriori error estimation for elliptic eigenproblems. Numer. Linear Algebra Appl. 9, 263–279 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Queiroz, M.G., Júdice, J.J., Humes, C. Jr.: The symmetric eigenvalue complementarity problem. Math. Comput. 73, 1849–1863 (2004)

    MATH  Google Scholar 

  22. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Manchester University Press, Manchester (1992)

    MATH  Google Scholar 

  23. Tango project web page: http//www.ime.usp.br/~egbirgin/tango

  24. Zhou, Y.: Eigenvalue computation from the optimization perspective: on Jacobi-Davidson, IIGD, RQI and Newton updates. Numer. Linear Algebra Appl. 2, 1–6 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Raydan.

Additional information

Dedicated with friendship to José Mario Martínez for his outstanding scientific contributions.

William La Cruz was supported by CDCH-UCV project PI-08-7276-2008/1.

Marcos Raydan was supported by USB and the Scientific Computing Center at UCV.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bello, L., La Cruz, W. & Raydan, M. Residual algorithm for large-scale positive definite generalized eigenvalue problems. Comput Optim Appl 46, 217–227 (2010). https://doi.org/10.1007/s10589-009-9250-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-009-9250-9

Keywords

Navigation