Skip to main content

Advertisement

Log in

Augmented Lagrangian for cone constrained topology optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Algorithmic aspects for the solution of topological shape optimization problems subject to a cone constraint are addressed in this paper. In this framework, an augmented Lagrangian method based on the concept of topological derivative is proposed. It is illustrated by some numerical experiments in structural optimization with compliance and eigenfrequency constraints and multiple loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G.: Shape Optimization by the Homogenization Method. Applied Mathematical Sciences, vol. 146. Springer, New York (2002)

    MATH  Google Scholar 

  2. Allaire, G.: Conception Optimale de Structures. Mathématiques & Applications (Berlin) (Mathematics & Applications), vol. 58. Springer, Berlin (2007). With the collaboration of Marc Schoenauer (INRIA) in the writing of Chap. 8

    MATH  Google Scholar 

  3. Allaire, G., Jouve, F.: A level-set method for vibration and multiple loads structural optimization. Comput. Methods Appl. Mech. Eng. 194(30–33), 3269–3290 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allaire, G., Jouve, F., Toader, A.-M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Allaire, G., de Gournay, F., Jouve, F., Toader, A.-M.: Structural optimization using topological and shape sensitivity via a level set method. Control Cybern. 34, 59–80 (2005)

    MATH  Google Scholar 

  6. Ammari, H., Kang, H.: Reconstruction of Small Inhomogeneities from Boundary Measurements. Lecture Notes in Mathematics, vol. 1846. Springer, Berlin (2004)

    MATH  Google Scholar 

  7. Ammari, H., Khelifi, A.: Electromagnetic scattering by small dielectric inhomogeneities. J. Math. Pures Appl. (9) 82(7), 749–842 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Amstutz, S.: Sensitivity analysis with respect to a local perturbation of the material property. Asymptot. Anal. 49(1–2), 87–108 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Amstutz, S.: Topological sensitivity analysis for some nonlinear PDE systems. J. Math. Pures Appl. (9) 85(4), 540–557 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Amstutz, S., Andrä, H.: A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216(2), 573–588 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Amstutz, S., Ciligot-Travain, M.: Optimality conditions for topology optimization subject to a cone constraint. Preprint 78, Université d’Avignon (2008)

  12. Argatov, I.I.: Asymptotic models for the topological sensitivity of the energy functional. Appl. Math. Lett. 22(1), 19–23 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)

    Article  Google Scholar 

  14. Bendsøe, M.P., Sigmund, O.: Topology Optimization. Theory, Methods and Applications. Springer, Berlin (2003).

    Google Scholar 

  15. Bonnans, F.: Optimisation Continue. Dunod, Paris (2006)

    Google Scholar 

  16. Burger, M., Hackl, B., Ring, W.: Incorporating topological derivatives into level set methods. J. Comput. Phys. 194(1), 344–362 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ciarlet, P.G.: Introduction à l’Analyse Numérique Matricielle et à l’Optimisation. Collection Mathématiques Appliquées pour la Maîtrise (Collection of Applied Mathematics for the Master’s Degree). Masson, Paris (1982)

    MATH  Google Scholar 

  18. Cohen, G.: Convexité et optimisation. Lecture notes, Ecole Nationale des Ponts et Chaussées

  19. Delfour, M.C., Zolésio, J.-P.: Shapes and geometries. Analysis, Differential Calculus, and Optimization, Advances in Design and Control, vol. 4. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  20. Eppler, K., Harbrecht, H., Mommer, M.S.: A new fictitious domain method in shape optimization. Comput. Optim. Appl. 40(2), 281–298 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eschenauer, H., Kobolev, V.V., Schumacher, A.: Bubble method for topology and shape optimization of structures. Struct. Optim. 8, 42–51 (1994)

    Article  Google Scholar 

  22. Feijóo, R.A., Novotny, A.A., Taroco, E., Padra, C.: The topological derivative for the Poisson’s problem. Math. Models Methods Appl. Sci. 13(12), 1825–1844 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Garreau, S., Guillaume, P., Masmoudi, M.: The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39(6), 1756–1778 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Martínez, J.M.: A note on the theoretical convergence properties of the SIMP method. Struct. Multidiscipl. Optim. 29(4), 319–323 (2005)

    Article  Google Scholar 

  25. Murat, F., Simon, J.: Quelques résultats sur le contrôle par un domaine géométrique. Publ. Laboratoire d’Analyse Numérique, Université Paris 6, pp. 1–46 (1974)

  26. Nazarov, S.A., Sokołowski, J.: Asymptotic analysis of shape functionals. J. Math. Pures Appl. (9) 82(2), 125–196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nazarov, S.A., Sokołowski, J.: Shape sensitivity of eigenvalues revisited. Control Cybern. 37(4), 999–1012 (2008)

    MATH  Google Scholar 

  28. Nazarov, S.A., Sokołowski, J.: Spectral problems in the shape optimisation. Singular boundary perturbations. Asymptot. Anal. 56(3–4), 159–204 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Sokołowski, J., Żochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sokołowski, J., Żochowski, A.: Optimality conditions for simultaneous, topology and shape optimization. SIAM J. Control Optim. 42(4), 1198–1221 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sokołowski, J., Zolésio, J.-P.: Introduction to Shape Optimization. Shape Sensitivity Analysis. Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992)

    MATH  Google Scholar 

  32. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1–2), 227–246 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Amstutz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amstutz, S. Augmented Lagrangian for cone constrained topology optimization. Comput Optim Appl 49, 101–122 (2011). https://doi.org/10.1007/s10589-009-9272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-009-9272-3

Keywords