Skip to main content
Log in

Monte Carlo algorithm for trajectory optimization based on Markovian readings

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper describes an efficient algorithm to find a smooth trajectory joining two points A and B with minimum length constrained to avoid fixed subsets. The basic assumption is that the locations of the obstacles are measured several times through a mechanism that corrects the sensors at each reading using the previous observation. The proposed algorithm is based on the penalized nonparametric method previously introduced that uses confidence ellipses as a fattening of the avoidance set. In this paper we obtain consistent estimates of the best trajectory using Monte Carlo construction of the confidence ellipse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asseo, S.J.: In-flight replanning of penetration routes to avoid threat zones of circular shapes. In: Aerospace and Electronics Conference, 1998. NAECON 1998. Proceedings of the IEEE 1998 National, pp. 383–391 (1998)

  2. Aström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, Princeton (2008)

    Google Scholar 

  3. Ayache, N., Faugeras, O.D.: Building, registrating, and fusing noisy visual maps. Int. J. Robot. Res. 7(6), 45–65 (1988)

    Article  Google Scholar 

  4. Azarbayejani, A., Pentland, A.P.: Recursive estimation of motion, structure, and focal length. IEEE Trans. Pattern Anal. Mach. Intell. 17, 562–575 (1995)

    Article  Google Scholar 

  5. Barraquand, J., Latombe, J.-C.: Nonholonomic multibody mobile robots: controllability and motion planning in the presence of obstacles. Algorithmica 10(2–4), 121–155 (1993). Computational robotics: the geometric theory of manipulation, planning, and control

    Article  MATH  MathSciNet  Google Scholar 

  6. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21(2), 193–207 (1998)

    Article  MATH  Google Scholar 

  7. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting/Peter J. Brockwell and Richard A. Davis. Springer, New York (1996)

    Google Scholar 

  8. Broida, Y.J., Chandrashekhar, S., Chellappa, R., Ch, Z., Broida, T.J., Ch, S.: Recursive 3-D motion estimation from a monocular image sequence. IEEE Trans. Aerosp. Electron. Syst. 26, 639–656 (1990)

    Article  Google Scholar 

  9. Chapuis, R., Aufrère, R., Chausse, F.: Accurate road following and reconstruction by computer vision. IEEE Trans. Intell. Transp. Syst. 3(4), 261–270 (2002)

    Article  Google Scholar 

  10. Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgardand, W., Kavraki, L., Thrun, S.: Principles of Robot Motion: Theory, Algorithms and Implementations. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  11. Dias, R., Garcia, N.L., Zambom, A.Z.: A penalized nonparametric method for nonlinear constrained optimization based on noisy data. Comput. Optim. Appl. (2008). doi:10.1007/s10589-008-9185-6

    Google Scholar 

  12. Fliess, M., Levine, J., Martin, P., Rouchon, P.: On differentially flat nonlinear-systems. C. R. Acad. Sci., Ser. 1 Math. 315(5), 619–624 (1992)

    MATH  MathSciNet  Google Scholar 

  13. Fliess, M., Lévine, J., Rouchon, P.: Flatness and defect of nonlinear systems: introductory theory and examples. Int. J. Control 61, 1327–1361 (1995)

    Article  MATH  Google Scholar 

  14. Grundel, D., Murphey, R., Pardalos, P., Prokopyev, O. (eds.): Cooperative Systems, Control and Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 588. Springer, Berlin (2007)

    MATH  Google Scholar 

  15. Harvey, A.C.: Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  16. Hirsch, M.J., Pardalos, P., Murphey, R., Grundel, D. (eds.): Advances in Cooperative Control and Optimization. Lecture Notes in Control and Information Sciences, vol. 369. Springer, Berlin (2008). Papers from a meeting held in Gainesville, FL, January 31–February 2, 2007

    Google Scholar 

  17. Laumond, J.-P. (ed.): Robot Motion Planning and Control. Lecture Notes in Control and Information Science, vol. 229. Springer, Berlin (1998). Available online: http://www.laas.fr/jpl/book.html

    Google Scholar 

  18. Lavalle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  19. Matthies, L., Kanade, T., Szeliski, R.: Kalman filter-based algorithms for estimating depth from image sequences (1989)

  20. Perrollaz, M., Labayrade, R., Gallen, R., Aubert, D.: A three resolution framework for reliable road obstacle detection using stereovision. In: MVA, pp. 469–472 (2007)

  21. Tiwari, A., Chandra, H., Yadegar, J., Wang, J.: Constructing optimal cyclic tours for planar exploration and obstacle avoidance: a graph theory approach. In: Advances in Variable Structure and Sliding Mode Control. Springer, Berlin (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo Dias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, R., Garcia, N.L. & Zambom, A.Z. Monte Carlo algorithm for trajectory optimization based on Markovian readings. Comput Optim Appl 51, 305–321 (2012). https://doi.org/10.1007/s10589-010-9337-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-010-9337-3

Keywords

Navigation