Skip to main content
Log in

Capital rationing problems under uncertainty and risk

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Capital rationing is a major problem in managerial decision making. The classical mathematical formulation of the problem relies on a multi-dimensional knapsack model with known input parameters. Since capital rationing is carried out in conditions where uncertainty is the rule rather than the exception, the hypothesis of deterministic data limits the applicability of deterministic formulations in real settings. This paper proposes a stochastic version of the capital rationing problem which explicitly accounts for uncertainty. In particular, a mathematical formulation is provided in the framework of stochastic programming with joint probabilistic constraints and a novel solution approach is proposed. The basic model is also extended to include specific risk measures. Preliminary computational results are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, S.: Convexity and decomposition of mean-risk stochastic programs. Math. Program. 106, 433–446 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9(3), 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baumol, W., Quandt, R.: Investment and discount rates under capital rationing—a programming approach. Econom. J. 75, 317–329 (1965)

    Google Scholar 

  4. Beraldi, P., Bruni, M.E.: An exact approach for solving integer problems under probabilistic constraints with random technology matrix. Ann. Oper. Res. doi:10.1007/s10479-009-0670-9

  5. Beraldi, P., Bruni, M.E.: Capital rationing problem under uncertainty. Technical Report ParCoLab, DEIS, University of Calabria (2009)

  6. Beraldi, P., Ruszczyński, A.: The probabilistic set covering problem. Oper. Res. 50, 956–967 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beraldi, P., Ruszczyński, A.: A branch and bound method for stochastic integer problems under probabilistic constraints. Optim. Methods Softw. 17, 359–382 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bisschop, J., Roelofs, M.: AIMMS. 3.7 User’s guide. Paragon Decision Technology B.V., The Netherlands (2006)

  9. Bonami, P., Lejeune, M.: An exact solution approach for portfolio optimization problems under stochastic and integer constraints. Oper. Res. 57(3), 650–670 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Byrne, R., Charnes, A., Cooper, W.W., Kortanek, K.: Some new approaches to risk. Account. Rev. 43, 18–37 (1968)

    Google Scholar 

  11. Chandra, A., Menon, N.M., Mishra, B.K.: Budgeting for information technology. Int. J. of Account. Inf. Syst. 8, 264–282 (2007)

    Google Scholar 

  12. Costa, A., Paixao, J.M.: An approximate solution approach for a scenario based capital budgeting problem. Comput. Manag. Sci. doi:10.1007/s10287-009-0117-4

  13. CPLEX. ILOG, C.P.L.E.X.: 6.5: Users manual. CPLEX Optimization, Inc., Incline Village, NV (1999)

  14. Eldenburg, L., Krishnan, R.: Management accounting and control in health care: an economics perspective. In: Handb. of Manag. Account. Res, vol. 2, pp. 859–883 (2006)

    Google Scholar 

  15. Kim, D.: Capital budgeting for new projects: on the role of auditing in information acquisition. J. Account. Econ. 41, 257–270 (2006)

    Article  Google Scholar 

  16. Kira, D., Kusy, M., Ratta, I.: The effect of project risk on capital rationing under uncertainty. Eng. Econ. 45, 37–55 (2000)

    Article  Google Scholar 

  17. Levy, H.: Stochastic dominance and expected utility: survey and analysis. Manag. Sci. 38, 555–593 (1992)

    Article  MATH  Google Scholar 

  18. Lorie, J.H., Savage, L.J.: Three problems in capital rationing. J. Bus. 28, 229–239 (1955)

    Article  Google Scholar 

  19. Luedtke, J.: An integer programming decomposition approach for optimization with probabilistic constraints. In: The 20th International Symposium of Mathematical Programming, Chicago, IL (2009)

    Google Scholar 

  20. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. Math. Program. 100, 589–611 (2008)

    Google Scholar 

  21. Luedtke, J., Ahmed, S., Nemhauser, G.: An integer programming approach for linear programs with probabilistic constraints. Math. Program. 122(2), 247–272 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Markovitz, H.M.: Mean-Variance Analysis in Portfolio Choice and Capital Markets. Blackwell, Oxford (1987)

    Google Scholar 

  23. Meier, H., Christofides, N., Salkin, G.: Capital budgeting under uncertainty - an integrated approach using contingent claims analysis and integer programming. Oper. Res. 49, 196–206 (2001)

    Article  MATH  Google Scholar 

  24. Myers, S.C.: A note on linear programming and capital budgeting. J. Finance 27, 89–92 (1972)

    Article  Google Scholar 

  25. Ogryczak, W., Ruszczynski, A.: On consistency of stochastic dominance and mean-semideviation models. Math. Program., Ser. B 89, 217–232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ogryczak, W., Ruszczynski, A.: Dual stochastic dominance and related mean–risk models. SIAM J. Optim. 13, 60–78 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Padberg, M., Wilczak, M.: Optimal project selection when borrowing and lending rates differ. Math. Comput. Model. 29, 63–78 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pagnoncelli, B.K. Ahmed, Shapiro, A.: Sample average approximation method for chance constrained programming: theory and applications. J. Optim. Theory Appl. 142, 399–416 (2009) doi:10.1007/s10957-009-9523-6

    Article  MathSciNet  MATH  Google Scholar 

  29. Pinter, J.: Deterministic approximations of probability inequalities. ZOR, Z. Oper.-Res. 33, 219–239 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Porter, R.B.: Semivariance and stochastic dominance: a comparison. Am. Econ. Rev. 64, 200–204 (1974)

    Google Scholar 

  31. Prékopa, A.: Dual method for a one-stage stochastic programming with random rhs obeying a discrete probability distribution. ZOR, Z. Oper.-Res. 34, 441–461 (1990)

    Article  MATH  Google Scholar 

  32. Prékopa, A.: Stochastic Programming. Kluwer, Boston (1995)

    Google Scholar 

  33. Ruszczyski, A.: Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra. Math. Program. 93, 195–215 (2002)

    Article  MathSciNet  Google Scholar 

  34. Ruszczynski, A., Shapiro, A.: Stochastic Programming. Handbook in Operations Research and Management Science. Elsevier, Amsterdam (2000)

    Google Scholar 

  35. Sarper, H.: Capital rationing under risk: a chance constrained approach using uniformly distributed cash flows and budgets. Eng. Econ. 39, 49–76 (1993)

    Article  Google Scholar 

  36. Seda, M.: Solving resource-constrained project scheduling problem as a sequence of multi-knapsack problems. WSEAS Trans. Inf. Sci. Appl. 3, 1785–1791 (2006)

    Google Scholar 

  37. Weingartner, H.M.: Mathematical Programming and the Analysis of Capital Budgeting Problems. Prentice-Hall, Englewood Cliffs (1963)

    Google Scholar 

  38. Weingartner, H.M.: Capital budgeting of interrelated project: survey and synthesis. Manag. Sci. 12, 485–516 (1966)

    Article  Google Scholar 

  39. Weingartner, H.M.: Criteria for programming investment project selection. J. Ind. Econ. 11, 65–76 (1966)

    Article  Google Scholar 

  40. Zenios, S.A., Ziemba, W.: Handbook on Asset and Liability Management, vol. B: Applications and Case Studies. North-Holland, Amsterdam (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Beraldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beraldi, P., Bruni, M.E. & Violi, A. Capital rationing problems under uncertainty and risk. Comput Optim Appl 51, 1375–1396 (2012). https://doi.org/10.1007/s10589-010-9390-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-010-9390-y

Keywords

Navigation