Skip to main content
Log in

Optimal control of Maxwell’s equations with regularized state constraints

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper is devoted to an optimal control problem of Maxwell’s equations in the presence of pointwise state constraints. The control is given by a divergence-free three-dimensional vector function representing an applied current density. To cope with the divergence-free constraint on the control, we consider a vector potential ansatz. Due to the lack of regularity of the control-to-state mapping, existence of Lagrange multipliers cannot be guaranteed. We regularize the optimal control problem by penalizing the pointwise state constraints. Optimality conditions for the regularized problem can be derived straightforwardly. It also turns out that the solution of the regularized problem enjoys higher regularity which then allows us to establish its convergence towards the solution of the unregularized problem. The second part of the paper focuses on the numerical analysis of the regularized optimal control problem. Here the state and the control are discretized by Nédélec’s curl-conforming edge elements. Employing the higher regularity property of the optimal control, we establish an a priori error estimate for the discretization error in the \(\boldsymbol{H}(\bold{curl})\)-norm. The paper ends by numerical results including a numerical verification of our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso, A., Valli, A.: An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comput. 68(226), 607–631 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alonso, A., Valli, A.: Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications. Springer, Berlin (2010)

    MATH  Google Scholar 

  3. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck, R., Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B.: Residual based a posteriori error estimators for eddy current computation. M2AN Math. Model. Numer. Anal. 34(1), 159–182 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bossavit, A.: Computational Electromagnetism. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  6. Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 4, 1309–1322 (1986)

    Article  MathSciNet  Google Scholar 

  7. Ciarlet, P. Jr. , Zou, J.: Fully discrete finite element approaches for time-dependent Maxwell’s equations. Numer. Math. 82(2), 193–219 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151(3), 221–276 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Costabel, M., Dauge, M., Nicaise, S.: Singularities of Maxwell interface problems. M2AN Math. Model. Numer. Anal. 33(3), 627–649 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Girault, V., Raviart, P.: Finite Element Methods for Navier–Stokes Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  11. Hiptmair, R.: Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36(1), 204–225 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11(1), 237–339 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Hoppe, R.H.W.: Adaptive multigrid and domain decomposition methods in the computation of electromagnetic fields. J. Comput. Appl. Math. 168(1–2), 245–254 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoppe, R.H.W., Schöberl, J.: Convergence of adaptive edge element methods for the 3D eddy currents equations. J. Comput. Math. 27, 657–676 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ito, K., Kunisch, K.: Semi-smooth Newton methods for state-constrained optimal control problems. Syst. Control Lett. 50, 221–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. Society for Industrial and Applied Mathematics, Philadelphia (2008)

    Book  MATH  Google Scholar 

  17. Landau, L.D., Lifshitz, E.M.: Electrodynamics of continuous media. In: Course of Theoretical Physics, vol. 8. Pergamon, Oxford (1960). Translated from the Russian by J.B. Sykes and J.S. Bell

    Google Scholar 

  18. Monk, P.: Analysis of a finite element method for Maxwell’s equations. SIAM J. Numer. Anal. 29, 714–729 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Monk, P.: Finite Element Methods for Maxwell’s Equations. Clarendon, Oxford (2003)

    Book  MATH  Google Scholar 

  20. Nédélec, J.C.: Mixed finite elements in ℝ3. Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nédélec, J.C.: A new family of mixed finite elements in ℝ3. Numer. Math. 50, 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schöberl, J.: NETGEN/NGSolve, http://sourceforge.net/projects/ngsolve/

  23. Schöberl, J.: A posteriori error estimates for Maxwell equations. Math. Comput. 77, 633–649 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irwin Yousept.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yousept, I. Optimal control of Maxwell’s equations with regularized state constraints. Comput Optim Appl 52, 559–581 (2012). https://doi.org/10.1007/s10589-011-9422-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-011-9422-2

Keywords

Navigation