Skip to main content
Log in

Enhancing RLT-based relaxations for polynomial programming problems via a new class of v-semidefinite cuts

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose to enhance Reformulation-Linearization Technique (RLT)-based linear programming (LP) relaxations for polynomial programming problems by developing cutting plane strategies using concepts derived from semidefinite programming. Given an RLT relaxation, we impose positive semidefiniteness on suitable dyadic variable-product matrices, and correspondingly derive implied semidefinite cuts. In the case of polynomial programs, there are several possible variants for selecting such particular variable-product matrices on which positive semidefiniteness restrictions can be imposed in order to derive implied valid inequalities. This leads to a new class of cutting planes that we call v-semidefinite cuts. We explore various strategies for generating such cuts, and exhibit their relative effectiveness towards tightening the RLT relaxations and solving the underlying polynomial programming problems in conjunction with an RLT-based branch-and-cut scheme, using a test-bed of problems from the literature as well as randomly generated instances. Our results demonstrate that these cutting planes achieve a significant tightening of the lower bound in contrast with using RLT as a stand-alone approach, thereby enabling a more robust algorithm with an appreciable reduction in the overall computational effort, even in comparison with the commercial software BARON and the polynomial programming problem solver GloptiPoly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ai, W., Zhang, S.: Strong duality for the CDT subproblem: a necessary and sufficient condition. SIAM J. Optim. 19(4), 1735–1756 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43(2–3), 471–484 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 3rd edn. Wiley, New York (2006)

    Book  MATH  Google Scholar 

  4. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program., Ser. A 113, 259–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burer, S., Vandenbussche, D.: Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound. Comput. Optim. Appl. 43(2), 181–195 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dalkiran, E.: Discrete and continuous nonconvex optimization: decision trees, valid inequalities, and reduced basis techniques. Ph.D. thesis, Virginia Tech (2011)

  7. Floudas, C.A., Pardalos, P.M., Adjiman, J.S., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic, Dordrecht (1999)

    MATH  Google Scholar 

  8. Gill, P.E., Murray, W., Saunders, M.A.: An SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Helmberg, C.: Semidefinite programming. Eur. J. Oper. Res. 137(3), 461–482 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Henrion, D., Lasserre, J.B.: GloptiPoly: global optimization over polynomials with Matlab and SeDuMi. ACM Trans. Math. Softw. 29(2), 165–194 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kojima, M., Tunçel, L.: On the finite convergence of successive SDP relaxation methods. Eur. J. Oper. Res. 143(2), 325–341 (2002)

    Article  MATH  Google Scholar 

  12. Konno, H., Kawadai, N., Tuy, H.: Cutting plane algorithms for nonlinear semidefinite programming problems with applications. J. Glob. Optim. 25(2), 141–155 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lasserre, J.B.: An explicit equivalent positive semidefinite program for nonlinear 0-1 programs. SIAM J. Control Optim. 12(3), 756–769 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Lasserre, J.B.: Semidefinite programming vs. LP relaxations for polynomial programming. Math. Oper. Res. 27(2), 347–360 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Laurent, M., Rendl, F.: Semidefinite programming and integer programming. In: Aardal, K., Nemhauser, G., Weismantel, R. (eds.) Handbook on Discrete Optimization, pp. 393–514. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  17. Schittkowski, K.: More test examples for nonlinear programming codes. Springer, New York (1987)

    Book  MATH  Google Scholar 

  18. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Dordrecht (1999)

    MATH  Google Scholar 

  19. Sherali, H.D., Fraticelli, B.M.P.: Enhancing RLT relaxations via a new class of semidefinite cuts. J. Glob. Optim. 22, 233–261 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique. J. Glob. Optim. 2(1), 101–112 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sherali, H.D., Tuncbilek, C.H.: A reformulation-convexification approach for solving nonconvex quadratic programming problems. J. Glob. Optim. 7(1), 1–31 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sherali, H.D., Tuncbilek, C.H.: Comparison of two reformulation-linearization technique based linear programming relaxations for polynomial programming problems. J. Glob. Optim. 10(4), 381–390 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sherali, H.D., Tuncbilek, C.H.: New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems. Oper. Res. Lett. 21(1), 1–9 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sherali, H.D., Wang, H.: Global optimization of nonconvex factorable programming problems. Math. Program. 89(3), 459–478 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shor, N.Z.: Dual quadratic estimates in polynomial and Boolean programming. Ann. Oper. Res. 25, 163–168 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shor, N.Z.: Nondifferentiable Optimization and Polynomial Problems. Kluwer Academic, Dordrecht (1998)

    MATH  Google Scholar 

  27. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  29. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vanderbei, R.J., Benson, H.Y.: On formulating semidefinite programming problems as smooth convex nonlinear optimization problems. Technical report, Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evrim Dalkiran.

Additional information

This research has been supported by the National Science Foundation under Grant No. CMMI-0969169.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherali, H.D., Dalkiran, E. & Desai, J. Enhancing RLT-based relaxations for polynomial programming problems via a new class of v-semidefinite cuts. Comput Optim Appl 52, 483–506 (2012). https://doi.org/10.1007/s10589-011-9425-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-011-9425-z

Keywords

Navigation