Skip to main content
Log in

Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We study the numerical approximation of Neumann boundary optimal control problems governed by a class of quasilinear elliptic equations. The coefficients of the main part of the operator depend on the state function, as a consequence the state equation is not monotone. We prove that strict local minima of the control problem can be approximated uniformly by local minima of discrete control problems and we also get an estimate of the rate of this convergence. One of the main issues in this study is the error analysis of the discretization of the state and adjoint state equations. Some difficulties arise due to the lack of uniqueness of solution of the discrete equations. The theoretical results are illustrated by numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arada, N., Casas, E., Tröltzsch, F.: Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23, 201–229 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bramble, J., Scott, J.: Simultaneous approximation in scales of Banach spaces. Math. Comput. 32, 947–954 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (1984)

    Google Scholar 

  4. Casas, E.: Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems. Adv. Comput. Math. 26, 137–153 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Casas, E., Dhamo, V.: Error estimates for the numerical approximation of a quaslinear Neumann problem under minimal regularity of the data. Numer. Math. 117, 115–145 (2010)

    Article  MathSciNet  Google Scholar 

  6. Casas, E., Dhamo, V.: Optimality conditions for a class of optimal boundary control problems with quasilinear elliptic equations. To appear in Control Cybern. 40(2) (2011)

  7. Casas, E., Mateos, M.: Second order sufficient optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40, 1431–1454 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casas, E., Mateos, M.: Error estimates for the numerical approximation of Neumann control problems. Comput. Optim. Appl. 39, 265–295 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Casas, E., Raymond, J.-P.: Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SIAM J. Control Optim. 45(5), 1586–1611 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Casas, E., Sokolowski, J.: Approximation of boundary control problems on curved domains. SIAM J. Control Optim. 48(6), 3746–3780 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Casas, E., Tröltzsch, F.: Optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM J. Control Optim. 48(2), 688–718 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Casas, E., Tröltzsch, F.: Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations. ESAIM:COCV (2010). doi:10.1051/cocv/2010025

    Google Scholar 

  13. Casas, E., Tröltzsch, F.: A general theorem on error estimates with application to a quasilinear elliptic optimal control problem. To appear in Comput. Optim. Appl. (2011)

  14. Casas, E., Mateos, M., Tröltzsch, F.: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31, 193–220 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Casas, E., Günther, A., Mateos, M.: A paradox in the approximation of Dirichlet control problems in curved domains. SIAM J. Control Optim. 49(5), 1998–2007 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Deckelnick, K., Günther, A., Hinze, M.: Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains. SIAM J. Control Optim. 48(4), 2798–2819 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  18. Heinkenschloss, M., Tröltzsch, F.: Analysis of the Lagrange-SQP-Newton method for the control of a phase field equation. Control Cybern. 28(2), 178–211 (1999)

    Google Scholar 

  19. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30, 45–61 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hinze, M., Kunisch, K.: Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40, 925–946 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hlaváček, I.: Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients. J. Math. Anal. Appl. 212(2), 452–466 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hlaváček, I., Křížek, M., Malý, J.: On Galerkin approximations of quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184, 168–189 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krumbiegel, K., Meyer, C., Rösch, A.: A priori error analysis for linear quadratic elliptic Neumann boundary control problems with control and state constraints. SIAM J. Control Optim. 48(8), 5108–5142 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kunisch, K., Sachs, E.W.: Reduced SQP-methods for parameter identification problems. SIAM J. Numer. Anal. 29, 1793–1820 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43(3), 970–985 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nečas, J.: Lés Méthodes Directes an Théorie des Equations Elliptiques. Editeurs Academia, Prague (1967)

    Google Scholar 

  27. Schatz, A.H.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comput. 28(128), 959–962 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  28. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Temam, R.: Navier-Stokes Equations. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  30. Tröltzsch, F.: On the Lagrange-Newton-SQP method for the optimal control of semilinear parabolic equations. SIAM J. Control Optim. 38, 294–312 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Philadelphia (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Casas.

Additional information

E. Casas was partially supported by the Spanish Ministerio de Ciencia e Innovación under projects MTM2008-04206 and “Ingenio Mathematica (i-MATH)” CSD2006-00032 (Consolider Ingenio 2010).

Appendix

Appendix

Lemma A.1

There exists a constant C>0 such that

$$\|z\|_{L^{4}(\Omega)}\le C\|z\|_{L^{2}(\Omega)}^{{1}/{2}}\|z\|_{H^{1}(\Omega)}^{{1}/{2}}\quad\forall z\in H^{1}(\Omega).$$

Proof

First we recall the following well known inequality (cf. [29, Lemma 3.3])

$$\|z\|_{L^{4}(\mathbb{R}^2)}\le2^{{1}/{4}}\|z\|_{L^{2}(\mathbb{R}^2)}^{{1}/{2}}\|\nabla z\|_{L^{2}(\mathbb{R}^2)}^{{1}/{2}}\quad\forall z\in H^1\bigl(\mathbb{R}^2\bigr). $$
(A.1)

Now, we use an extention operator E:H 1(Ω)→H 1(ℝ2) such that

$$\|Ez\|_{L^{2}(\mathbb{R}^{2})}\le C_{1}\|z\|_{L^{2}(\Omega)}\quad\text{and}\quad\|Ez\|_{H^{1}(\mathbb{R}^{2})}\le C_{2}\|z\|_{H^{1}(\Omega)}; $$
(A.2)

see [26, Theorem 3.9 and Remark 3.5]. Then, (A.1) and (A.2) imply

 □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casas, E., Dhamo, V. Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations. Comput Optim Appl 52, 719–756 (2012). https://doi.org/10.1007/s10589-011-9440-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-011-9440-0

Keywords

Navigation