Skip to main content
Log in

Generalized weak sharp minima in cone-constrained convex optimization with applications

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider convex optimization problems with cone constraints (CPC in short). We study generalized weak sharp minima properties for (CPC) in the Banach space and Hilbert space settings, respectively. Some criteria and characterizations for the solution set to be a set of generalized weak sharp minima for (CPC) are derived. As an application, we propose an algorithm for (CPC) in the Hilbert space setting. Convergence analysis of this algorithm is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  2. Burke, J.V., Ferris, M.C.: Characterization of solution sets of convex programs. Oper. Res. Lett. 10(1), 57–61 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burke, J.V., Ferris, M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31, 1340–1359 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burke, J.V., Ferris, M.C.: A Gauss–Newton method for convex composite optimization. Math. Program. 71, 179–194 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Burke, J.V., Deng, S.: Weak sharp minima revisited, part I: Basic theory. Control Cybern. 31, 439–469 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Burke, J.V., Deng, S.: Weak sharp minima revisited, part II: Application to linear regularity and error bounds. Math. Program., Ser. B 104, 235–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burke, J.V., Deng, S.: Weak sharp minima revisited, part III: Error bounds for differentiable convex inclusions. Math. Program., Ser. B 116, 37–56 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burke, J.V., Lewis, A., Overton, M.: Optimization matrix stability. Proc. Am. Math. Soc. 129, 1635–1642 (2000)

    Article  MathSciNet  Google Scholar 

  9. Burke, J.V., Lewis, A., Overton, M.: Optimization stability and eigenvalue multiplicity. Found. Comput. Math. 1, 205–225 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burke, J.V., Moré, J.J.: On the identification of active constraints. SIAM J. Numer. Anal. 25, 1197–1211 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  12. Cromme, L.: Strong uniqueness. Numer. Math. 29, 179–193 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deng, S., Yang, X.Q.: Weak sharp minima in multicriteria linear programming. SIAM J. Optim. 15, 456–460 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ferris, M.C.: Weak sharp minima and penalty functions in mathematical programming. Ph.D. Thesis, University of Cambridge (1988)

  15. Ferris, M.C.: Iterative linear programming solution of convex programs. J. Optim. Theory Appl. 65, 53–65 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ferris, M.C.: Finite termination of the proximal point algorithm. Math. Program. 50, 359–366 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Flåm, S.D., Seeger, A.: Solving cone-constrained convex programs by differential inclusions. Math. Program. 65, 107–121 (1994)

    Article  MATH  Google Scholar 

  18. Flåm, S.D., Zowe, J.: A primal-dual differential method for convex programming. Optim. Nonlinear Anal. 244, 119–129 (1992)

    Google Scholar 

  19. Henrion, R., Outrata, J.: A subdifferential condition for calmness of multifunctions. J. Math. Anal. Appl. 258, 110–130 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, X.X., Yang, X.Q., Teo, K.L.: Characterizing nonemptiness and compactness of the solution set of a convex vector optimization problem with cone constraints and applications. J. Optim. Theory Appl. 123, 391–407 (2004)

    Article  MathSciNet  Google Scholar 

  21. Izmailov, A.F., Solodov, M.V.: Optimality conditions for irregular inequality-constrained problems. SIAM J. Control Optim. 40, 1280–1295 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jeyaumar, V., Lee, G.M., Dinh, N.: Lagrange multiplier conditions characterizing the optimal solution sets of cone-constrained convex programs. J. Optim. Theory Appl. 123, 83–103 (2004)

    Article  MathSciNet  Google Scholar 

  23. Jittorntrum, K., Osborne, M.R.: Strong uniqueness and second order convergence in nonlinear discrete approximation. Numer. Math. 34, 439–455 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jourani, A.: Hoffman’s error bounds, local controbility and sensitivity analysis. SIAM J. Control Optim. 38, 947–970 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lewis, A.S., Pang, J.S.: Error bounds for convex inequality systems. In: Crouzeix, J.P. (ed.) Proceedings of the Fifth Symposium on Generalized Convexity, Luminy-Marseille (1996)

    Google Scholar 

  26. Li, C., Wang, X.: On convergence of the Gauss-Newton method for convex composite optimization. Math. Program. 91, 349–356 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mangasarian, O.L.: A simple characterization of solution sets of convex programs. Oper. Res. Lett. 7(1), 21–26 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Marcotte, P., Zhu, D.L.: Weak sharp solutions of variational inequalities. SIAM J. Optim. 9, 179–189 (1998)

    Article  MathSciNet  Google Scholar 

  29. Osborne, M.R., Womersley, R.S.: Strong uniqueness in sequential linear programming. J. Aust. Math. Soc., Ser. B 31, 379–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Polyak, B.T.: Sharp minima. Institute of control sciences lecture notes, Moscow, USSR, 1979. Presented at the IIASA workshop on generalized Lagrangians and their applications, IIASA, Laxenburg, Austria (1979)

  31. Shapiro, A.: On uniqueness of Lagrange multipliers in optimization problems subject to cone constraints. SIAM J. Optim. 7, 508–518 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shapiro, A., Sun, J.: Some properties of the augmented Lagrangian in cone constrained optimization. Math. Oper. Res. 29, 479–491 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, Z.L., Wu, S.Y.: Weak sharp solutions of variational inequalities in Hilbert spaces. SIAM J. Optim. 14, 1011–1027 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zheng, X.Y., Ng, K.F.: Strong KKT conditions and weak sharp minima in convex-composite optimization. Math. Program. 126, 259–279 (2009)

    Article  MathSciNet  Google Scholar 

  35. Zheng, X.Y., Yang, X.M., Teo, K.L.: Sharp minima for multiobjective optimization in Banach spaces. Set-Valued Anal. 14, 327–345 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zheng, X.Y., Yang, X.Q.: Weak sharp minima for semi-infinite optimization problems with applications. SIAM J. Optim. 18, 573–588 (2004)

    Article  MathSciNet  Google Scholar 

  37. Zheng, X.Y., Yang, X.Q.: Weak sharp minima for piecewise linear multiobjective optimization in normed spaces. Nonlinear Anal., Theory, Methods Appl. 68, 3771–3779 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. X. Huang.

Additional information

This work is supported by the National Science Foundation of China, a research grant from Chongqing University, the Doctoral Start-Up Research Grant from Chongqing Normal University (Grant No. 10XLB016), the Natural Science Foundation of Chongqing (Grant No. CSTC, 2009BB8240), Chongqing science and technology commission (Grant No. cstc2011jjA00003) and the Special Fund of Chongqing Key Laboratory (CSTC).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, H.L., Huang, X.X. & Peng, J.W. Generalized weak sharp minima in cone-constrained convex optimization with applications. Comput Optim Appl 53, 807–821 (2012). https://doi.org/10.1007/s10589-012-9457-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9457-z

Keywords