Abstract
In this paper, we consider convex optimization problems with cone constraints (CPC in short). We study generalized weak sharp minima properties for (CPC) in the Banach space and Hilbert space settings, respectively. Some criteria and characterizations for the solution set to be a set of generalized weak sharp minima for (CPC) are derived. As an application, we propose an algorithm for (CPC) in the Hilbert space setting. Convergence analysis of this algorithm is given.
Similar content being viewed by others
References
Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)
Burke, J.V., Ferris, M.C.: Characterization of solution sets of convex programs. Oper. Res. Lett. 10(1), 57–61 (1991)
Burke, J.V., Ferris, M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31, 1340–1359 (1993)
Burke, J.V., Ferris, M.C.: A Gauss–Newton method for convex composite optimization. Math. Program. 71, 179–194 (1995)
Burke, J.V., Deng, S.: Weak sharp minima revisited, part I: Basic theory. Control Cybern. 31, 439–469 (2002)
Burke, J.V., Deng, S.: Weak sharp minima revisited, part II: Application to linear regularity and error bounds. Math. Program., Ser. B 104, 235–261 (2005)
Burke, J.V., Deng, S.: Weak sharp minima revisited, part III: Error bounds for differentiable convex inclusions. Math. Program., Ser. B 116, 37–56 (2009)
Burke, J.V., Lewis, A., Overton, M.: Optimization matrix stability. Proc. Am. Math. Soc. 129, 1635–1642 (2000)
Burke, J.V., Lewis, A., Overton, M.: Optimization stability and eigenvalue multiplicity. Found. Comput. Math. 1, 205–225 (2001)
Burke, J.V., Moré, J.J.: On the identification of active constraints. SIAM J. Numer. Anal. 25, 1197–1211 (1988)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
Cromme, L.: Strong uniqueness. Numer. Math. 29, 179–193 (1978)
Deng, S., Yang, X.Q.: Weak sharp minima in multicriteria linear programming. SIAM J. Optim. 15, 456–460 (2004)
Ferris, M.C.: Weak sharp minima and penalty functions in mathematical programming. Ph.D. Thesis, University of Cambridge (1988)
Ferris, M.C.: Iterative linear programming solution of convex programs. J. Optim. Theory Appl. 65, 53–65 (1990)
Ferris, M.C.: Finite termination of the proximal point algorithm. Math. Program. 50, 359–366 (1991)
Flåm, S.D., Seeger, A.: Solving cone-constrained convex programs by differential inclusions. Math. Program. 65, 107–121 (1994)
Flåm, S.D., Zowe, J.: A primal-dual differential method for convex programming. Optim. Nonlinear Anal. 244, 119–129 (1992)
Henrion, R., Outrata, J.: A subdifferential condition for calmness of multifunctions. J. Math. Anal. Appl. 258, 110–130 (2001)
Huang, X.X., Yang, X.Q., Teo, K.L.: Characterizing nonemptiness and compactness of the solution set of a convex vector optimization problem with cone constraints and applications. J. Optim. Theory Appl. 123, 391–407 (2004)
Izmailov, A.F., Solodov, M.V.: Optimality conditions for irregular inequality-constrained problems. SIAM J. Control Optim. 40, 1280–1295 (2001)
Jeyaumar, V., Lee, G.M., Dinh, N.: Lagrange multiplier conditions characterizing the optimal solution sets of cone-constrained convex programs. J. Optim. Theory Appl. 123, 83–103 (2004)
Jittorntrum, K., Osborne, M.R.: Strong uniqueness and second order convergence in nonlinear discrete approximation. Numer. Math. 34, 439–455 (1980)
Jourani, A.: Hoffman’s error bounds, local controbility and sensitivity analysis. SIAM J. Control Optim. 38, 947–970 (2000)
Lewis, A.S., Pang, J.S.: Error bounds for convex inequality systems. In: Crouzeix, J.P. (ed.) Proceedings of the Fifth Symposium on Generalized Convexity, Luminy-Marseille (1996)
Li, C., Wang, X.: On convergence of the Gauss-Newton method for convex composite optimization. Math. Program. 91, 349–356 (2002)
Mangasarian, O.L.: A simple characterization of solution sets of convex programs. Oper. Res. Lett. 7(1), 21–26 (1988)
Marcotte, P., Zhu, D.L.: Weak sharp solutions of variational inequalities. SIAM J. Optim. 9, 179–189 (1998)
Osborne, M.R., Womersley, R.S.: Strong uniqueness in sequential linear programming. J. Aust. Math. Soc., Ser. B 31, 379–384 (1990)
Polyak, B.T.: Sharp minima. Institute of control sciences lecture notes, Moscow, USSR, 1979. Presented at the IIASA workshop on generalized Lagrangians and their applications, IIASA, Laxenburg, Austria (1979)
Shapiro, A.: On uniqueness of Lagrange multipliers in optimization problems subject to cone constraints. SIAM J. Optim. 7, 508–518 (1997)
Shapiro, A., Sun, J.: Some properties of the augmented Lagrangian in cone constrained optimization. Math. Oper. Res. 29, 479–491 (2004)
Wu, Z.L., Wu, S.Y.: Weak sharp solutions of variational inequalities in Hilbert spaces. SIAM J. Optim. 14, 1011–1027 (2004)
Zheng, X.Y., Ng, K.F.: Strong KKT conditions and weak sharp minima in convex-composite optimization. Math. Program. 126, 259–279 (2009)
Zheng, X.Y., Yang, X.M., Teo, K.L.: Sharp minima for multiobjective optimization in Banach spaces. Set-Valued Anal. 14, 327–345 (2006)
Zheng, X.Y., Yang, X.Q.: Weak sharp minima for semi-infinite optimization problems with applications. SIAM J. Optim. 18, 573–588 (2004)
Zheng, X.Y., Yang, X.Q.: Weak sharp minima for piecewise linear multiobjective optimization in normed spaces. Nonlinear Anal., Theory, Methods Appl. 68, 3771–3779 (2008)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by the National Science Foundation of China, a research grant from Chongqing University, the Doctoral Start-Up Research Grant from Chongqing Normal University (Grant No. 10XLB016), the Natural Science Foundation of Chongqing (Grant No. CSTC, 2009BB8240), Chongqing science and technology commission (Grant No. cstc2011jjA00003) and the Special Fund of Chongqing Key Laboratory (CSTC).
Rights and permissions
About this article
Cite this article
Luo, H.L., Huang, X.X. & Peng, J.W. Generalized weak sharp minima in cone-constrained convex optimization with applications. Comput Optim Appl 53, 807–821 (2012). https://doi.org/10.1007/s10589-012-9457-z
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-012-9457-z