Skip to main content
Log in

An active set feasible method for large-scale minimization problems with bound constraints

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We are concerned with the solution of the bound constrained minimization problem {minf(x), lxu}. For the solution of this problem we propose an active set method that combines ideas from projected and nonmonotone Newton-type methods. It is based on an iteration of the form x k+1=[x k+α k d k], where α k is the steplength, d k is the search direction and [⋅] is the projection operator on the set [l,u]. At each iteration a new formula to estimate the active set is first employed. Then the components \(d_{N}^{k}\) of d k corresponding to the free variables are determined by a truncated Newton method, and the components \(d_{A}^{k}\) of d k corresponding to the active variables are computed by a Barzilai-Borwein gradient method. The steplength α k is computed by an adaptation of the nonmonotone stabilization technique proposed in Grippo et al. (Numer. Math. 59:779–805, 1991). The method is a feasible one, since it maintains feasibility of the iterates x k, and is well suited for large-scale problems, since it uses matrix-vector products only in the truncated Newton method for computing \(d_{N}^{k}\). We prove the convergence of the method, with superlinear rate under usual additional assumptions. An extensive numerical experimentation performed on an algorithmic implementation shows that the algorithm compares favorably with other widely used codes for bound constrained problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andreani, R., Birgin, E.G., Martinez, J.M., Schuverdt, M.L.: Second-order negative-curvature methods for box-constrained and general constrained optimization. Comput. Optim. Appl. 45(2), 209–236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertsekas, D.P.: Projected Newton methods for optimization problems with simple constraints. SIAM J. Control Optim. 20(2), 221–246 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birgin, E.G., Gentil, J.M.: Evaluating bound-constrained minimization. Comput. Optim. Appl. (2012). doi:10.1007/s10589-012-9466-y

    Google Scholar 

  4. Birgin, E.G., Martinez, J.M.: A box constrained optimization algorithm with negative curvature directions and spectral projected gradients. Computing, Suppl. 15, 49–60 (2001)

    Article  MathSciNet  Google Scholar 

  5. Birgin, E.G., Martinez, J.M.: Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23, 101–125 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conn, A., Gould, N., Toint, Ph.: Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25, 433–460 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dembo, R.S., Steihaug, T.: Truncated Newton algorithms for large scale unconstrained optimization. Math. Program. 26, 190–212 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dennis, J.E., Heinkenschloss, M., Vicente, L.N.: Trust-region interior-point algorithms for a class of nonlinear programming problems. SIAM J. Control Optim. 36, 1750–1794 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profile. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fasano, G., Lucidi, S.: A nonmonotone Newton-Krylov method exploiting negative curvature directions, for large scale unconstrained optimization. Optim. Lett. 3, 521–535 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Facchinei, F., Lucidi, S., Palagi, L.: A truncated Newton algorithm for large scale box constrained optimization. SIAM J. Optim. 12(4), 1100–1125 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedlander, A., Martinez, J.M., Santos, S.A.: A new trust region algorithm for bound constrained minimization. Appl. Math. Optim. 30, 235–266 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grippo, L., Lampariello, F., Lucidi, S.: A class of nonmonotone stabilization methods in unconstrained optimization. Numer. Math. 59, 779–805 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grippo, L., Lampariello, F., Lucidi, S.: A truncated Newton method with nonmonotone line search for unconstrained optimization. J. Optim. Theory Appl. 60(3), 401–419 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gould, N., Orban, D., Toint, Ph.: GALAHAD, a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization. ACM Trans. Math. Softw. 29(4), 353–372 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gould, N.I.M., Orban, D., Toint, Ph.: CUTEr (and SifDec): a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hager, W.W., Zhang, H.: A new active set algorithm for box constrained optimization. SIAM J. Optim. 17, 526–557 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Heinkenschloss, M., Ulbrich, M., Ulbrich, S.: Superlinear and quadratic convergence of affine-scaling interior-point Newton methods for problems with simple bounds without strict complementarity assumption. Math. Program. 86, 615–635 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kanzow, C., Klug, A.: On affine-scaling interior-point Newton methods for nonlinear minimization with bound constraints. Comput. Optim. Appl. 35(2), 177–197 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, C.J., Moré, J.J.: Nexton’s method for large bound-constrained optimization problems. SIAM J. Optim. 9(4), 1100–1127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moré, J.J., Toraldo, G.: Algorithms for bound constrained quadratic programming problems. Numer. Math. 55, 377–400 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moré, J.J., Toraldo, G.: Numerical solution of large quadratic programming problems with bound constraints. SIAM J. Control Optim. 1, 93–113 (1991)

    MATH  Google Scholar 

  23. Schwartz, A., Polak, E.: Family of projected descent methods for optimization problems with simple bounds. J. Optim. Theory Appl. 92(1), 1–31 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ulbrich, M., Ulbrich, S., Heinkenschloss, M.: Global convergence of trust-region interior-point algorithms for infinite-dimensional nonconvex minimization subject to pointwise bounds. SIAM J. Control Optim. 37, 731–776 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, Y.: Interior-point gradient methods with diagonal-scalings for simple-bound constrained optimization. Tech. report TR04-06, Department of Computational and Applied Mathematics, Rice University, Houston, TX (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Di Pillo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Computational Results for NMBC_1, NMBC_2, GENCAN, LANCELOT B, ASA_CG (PDF 90 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Santis, M., Di Pillo, G. & Lucidi, S. An active set feasible method for large-scale minimization problems with bound constraints. Comput Optim Appl 53, 395–423 (2012). https://doi.org/10.1007/s10589-012-9506-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9506-7

Keywords

Navigation