Skip to main content
Log in

A homotopy method for nonlinear semidefinite programming

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, for solving the nonlinear semidefinite programming problem, a homotopy is constructed by using the parameterized matrix inequality constraint. Existence of a smooth path determined by the homotopy equation, which starts from almost everywhere and converges to a Karush–Kuhn–Tucker point, is proven under mild conditions. A predictor-corrector algorithm is given for numerically tracing the smooth path. Numerical tests with nonlinear semidefinite programming formulations of several control design problems with the data contained in COMPl e ib are done. Numerical results show that the proposed algorithm is feasible and applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Robbin, J.: Transversal Mappings and Flows. Benjamin, New York (1967)

    MATH  Google Scholar 

  2. Alizadeh, F.: Combinatorial optimization with interior point methods and semidefinite matrices. Ph.D. thesis, University of Minnesota, Minneapolis, USA (1991)

  3. Alizadeh, F., Haeberly, J.P.A., Nayakkankuppam, M.V., Overton, M.L., Schmieta, S.: SDPPACK user’s guide. Technical report, Courant Institute of Mathematical Sciences. New York University, New York (1997)

  4. Alizadeh, F., Haeberly, J.P.A., Overton, M.L.: Primal-dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM J. Optim. 8(3), 746–768 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Allgower, E.L., Georg, K.: Continuation and Path Following. Acta Numer., pp. 1–64. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  6. Allgower, E.L., Georg, K.: Numerical Path Following pp. 3–207. North-Holland, Amsterdam (1997)

    Google Scholar 

  7. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer, New York (2000)

    MATH  Google Scholar 

  8. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  9. Chow, S.N., Mallet-Paret, J., Yorke, J.A.: Finding zeroes of maps: homotopy methods that are constructive with probability one. Math. Comput. 32(143), 887–899 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Correa, R., Ramirez, C.H.: A global algorithm for nonlinear semidefinite programming. SIAM J. Optim. 15(1), 303–318 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fares, B., Noll, D., Apkarian, P.: Robust control via sequential semidefinite programming. SIAM J. Control Optim. 40(6), 1791–1820 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Forsgren, A.: Optimality conditions for nonconvex semidefinite programming. Math. Program., Ser. A 88(1), 105–128 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Freund, R.W., Jarre, F., Vogelbusch, C.H.: Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling. Math. Program., Ser. B 109(2–3), 581–611 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garcia, C.B., Zangwill, W.I.: Pathways to Solutions, Fixed Points and Equilibria. Prentice Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  15. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42(6), 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gómez, W., Ramírez, H.: A filter algorithm for nonlinear semidefinite programming. Comput. Appl. Math. 29(2), 297–328 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior-point method for semidefinite programming. SIAM J. Optim. 6(2), 342–361 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Henrion, D., Löfberg, J., Kočvara, M., Stingl, M.: Solving polynomial static output feedback problems with PENBMI. In: Proc. of the 44th IEEE Conference on Decision and Control, Sevilla, Spain, vol. 1, pp. 7581–7586 (2005)

    Chapter  Google Scholar 

  19. Henrion, D., Peaucelle, D., Arzelier, D., Šebek, M.: Ellipsoidal approximation of the stability domain of a polynomial. IEEE Trans. Autom. Control 48(12), 2255–2259 (2003)

    Article  Google Scholar 

  20. Jarre, F.: A qqp-minimization method for semidefinite and smooth nonconvex programs. Technical report, Trierer Forschungsberichte Mathematik/Informatik, Universität Trier, (1998)

  21. Jarre, F.: An interior method for nonconvex semidefinite programs. Optim. Eng. 1(4), 347–372 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jury, E.I.: Inners and Stability of Dynamic Systems. Wiley, New York (1974)

    MATH  Google Scholar 

  23. Kanzow, C., Nagel, C., Kato, H., Fukushima, M.: Successive linearization methods for nonlinear semidefinite programs. Comput. Optim. Appl. 31(3), 251–273 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. de Klerk, E.: Aspects of Semidefinite Programming. Kluwer Academic, Dordrecht (2002)

    MATH  Google Scholar 

  25. Kočvara, M., Stingl, M.: Pennon: a code for convex nonlinear and semidefinite programming. Optim. Methods Softw. 18(3), 317–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7(1), 86–125 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Leibfritz, F.: COMPleib: Constrained matrix optimization problem library—a collection of test examples for nonlinear semidefinite programming, control system design and related problems. Technical report, Universität Trier, Trier, Germany (2004)

  28. Leibfritz, F., Mostafa, E.M.E.: An interior point constrained trust region method for a special class of nonlinear semidefinite programming problems. SIAM J. Optim. 12(4), 1048–1074 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Math. Program., Ser. B 95(2), 407–430 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Monteiro, R.D.C.: Primal-dual path-following algorithms for semidefinite programming. SIAM J. Optim. 7(3), 663–678 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  32. Nesterov, Y.E., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim. 8(2), 324–364 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Noll, D.: Local convergence of an augmented Lagrangian method for matrix inequality constrained programming. Optim. Methods Softw. 22(5), 777–802 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Noll, D., Apkarian, P.: Spectral bundle methods for non-convex maximum eigenvalue functions: second-order methods. Math. Program., Ser. B 104(2–3), 729–747 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shapiro, A.: First and second order analysis of nonlinear semidefinite programs. Math. Program., Ser. B 77(2), 301–320 (1997)

    MATH  Google Scholar 

  36. Stingl, M.: On the solution of nonlinear semidefinite programs by augmented Lagrangian methods. Ph.D. thesis, Institute of Applied Mathematics II, Friedrich–Alexander University of Erlangen–Nuremberg (2006)

  37. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11/12(1–4), 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  38. Sun, D., Sun, J., Zhang, L.: The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Math. Program., Ser. A 114(2), 349–391 (2008)

    Article  MATH  Google Scholar 

  39. Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Todd, M.J., Toh, K.C., Tütüncü, R.H.: On the Nesterov-Todd direction in semidefinite programming. SIAM J. Optim. 8(3), 769–796 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program., Ser. B 95(2), 189–217 (2003)

    Article  MATH  Google Scholar 

  42. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming. International Series in Operations Research & Management Science, vol. 27. Kluwer Academic, Boston (2000)

    Google Scholar 

  43. Yamashita, H., Yabe, H.: Local and superlinear convergence of a primal-dual interior point method for nonlinear semidefinite programming. Math. Program., Ser. A 132(1–2), 1–30 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yamashita, H., Yabe, H., Harada, K.: A primal-dual interior point method for nonlinear semidefinite programming. Math. Program., Ser. A 135(1–2), 89–121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to anonymous reviewers for many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yu.

Additional information

The research was supported by the National Natural Science Foundation of China (11171051, 91230103, 71172136) and Program for New Century Excellent Talents in University (NCET-10-0281).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Yu, B. A homotopy method for nonlinear semidefinite programming. Comput Optim Appl 56, 81–96 (2013). https://doi.org/10.1007/s10589-013-9545-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9545-8

Keywords

Navigation