Abstract
Many researchers have used Oneshot optimization methods based on user-specified primal state iterations, the corresponding adjoint iterations, and appropriately preconditioned design steps. Our goal here is to develop heuristics for sequencing these three subtasks, in order to optimize the convergence rate of the resulting coupled iteration cycle. A key ingredient is the preconditioning in the design step by a BFGS approximation of the projected Hessian. We provide a hard bound on the spectral radius of the coupled iteration cycle at local minima satisfying second order sufficiency conditions. Finally, we show how certain problem specific parameters can be estimated by local samples and be used to steer the whole process adaptively. We present limited numerical results that confirm the theoretical analysis.
Similar content being viewed by others
References
Averick, B.M., Carter, R.G., Moré, J.J.: The minpack-2 test problem collection (1991). doi:10.1.1.45.259
Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representations of quasi-Newton matrices and their use in limited memory methods. Math. Program., Ser. A 63(2), 129–156 (1994). doi:10.1007/BF01582063
Evans, L.C.: Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics, vol. 19. Am. Math. Soc., Providence (2010)
Gauger, N., Griewank, A., Hamdi, A., Kratzenstein, C., Oezkaya, E., Slawig, T.: Automated extension of fixed point PDE solvers for optimal design with bounded retardation. Int. Ser. Numer. Math. 106, 99–122 (2012)
Griewank, A.: Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation. Frontiers in Applied Mathematics, vol. 19. SIAM, Philadelphia (2000)
Griewank, A.: Projected Hessians for preconditioning in one-step one-shot design optimization. In: Large-Scale Nonlinear Optimization. Nonconvex Optim. Appl., vol. 83, pp. 151–171. Springer, New York (2006). doi:10.1007/0-387-30065-1_10
Griewank, A., Faure, C.: Reduced functions, gradients and Hessians from fixed-point iterations for state equations. Numer. Algorithms 30(2), 113–139 (2002)
Griewank, A., Faure, C.: Piggyback differentiation and optimization. In: Large-Scale PDE-Constrained Optimization (Santa Fe, NM, 2001). Lect. Notes Comput. Sci. Eng., vol. 30, pp. 148–164. Springer, Berlin (2003)
Griewank, A., Oezkaya, E.: Quantifying retardation in simulation based optimization. In: Optimization, Simulation, and Control. Springer Optimization and Its Application, vol. 76, pp. 79–96. Springer, New York (2013)
Hamdi, A., Griewank, A.: Reduced quasi-Newton method for simultaneous design and optimization. Comput. Optim. Appl. 49(3), 521–548 (2011)
Hazra, S.B., Schulz, V., Brezillon, J., Gauger, N.R.: Aerodynamic shape optimization using simultaneous pseudo-timestepping. J. Comput. Phys. 204(1), 46–64 (2005). doi:10.1016/j.jcp.2004.10.007
Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications, vol. 23. Springer, New York (2009)
Jameson, A.: Aerodynamic design via control theory. In: Recent Advances in Computational Fluid Dynamics, Princeton, NJ, 1988. Lect. Notes in Eng., vol. 43, pp. 377–401. Springer, Berlin (1989). doi:10.1007/978-3-642-83733-3_14
Kaland, L., Reyes, J.C.D.L., Gauger, N.R.: One shot methods in function space for PDE-constrained optimal control problems. Optim. Methods Softw. (2013). doi:10.1080/10556788.2013.774397
Kanzow, C.: Numerik Linearer Gleichungssysteme—Direkte und Iterative Verfahren, 1 edn. Gabler, Wiesbaden (2004)
Kelley, C.T.: Iterative Methods for Optimization. Frontiers in Applied Mathematics, vol. 18. SIAM, Philadelphia (1999). doi:10.1137/1.9781611970920
Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Die Grundlehren der mathematischen Wissenschaften, vol. 170. Springer, New York (1971). Translated from the French by S.K. Mitter
Naumann, U.: The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation. Software, Environments and Tools. SIAM, Philadelphia (2011)
Nemili, A., Özkaya, E., Gauger, N., Carnarius, A., Thiele, F.: Optimal control of unsteady flows using discrete adjoints. AIAA 2011-3720 (2011). doi:10.1007/978-3-642-35680-3_53
Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)
Ostrowski, A.M.: Solution of Equations and Systems of Equations, 2nd edn. Pure and Applied Mathematics, vol. 9. Academic Press, New York (1966)
Özkaya, E., Gauger, N.R.: Single-step one-shot aerodynamic shape optimization. In: Optimal Control of Coupled Systems of Partial Differential Equations. Int. Ser. Numer. Math., vol. 158, pp. 191–204. Birkhäuser, Basel (2009). doi:10.1007/978-3-7643-8923-9_11
Özkaya, E., Gauger, N.R.: Automatic transition from simulation to one-shot shape optimization with Navier-Stokes equations. GAMM-Mitt. 33(2), 133–147 (2010). doi:10.1002/gamm.201010011
Potschka, A., Bock, H.G.: On the connection of forward and optimization problem in simultaneous inexact SQP methods. In: Recent Trends in Mathematics Related to PDE Constrained Optimization (2010)
Quarteroni, A.: Numerical Models for Differential Problems. MS&A. Modeling, Simulation and Applications vol. 2. Springer, Milan (2009). Translated from the 4th (2008) Italian edition by Silvia Quarteroni. doi:10.1007/978-88-470-1071-0
Tröltzsch, F., Sprekels, J.: Optimal Control of Partial Differential Equations—Theory, Methods, and Applications. Am. Math. Soc., Heidelberg (2010)
Acknowledgements
The research for this paper was funded by the Schwerpunktprogramm 1253 Optimization with partial Differential Equations of the Deutsche Forschungsgesellschaft DFG in the project Automated Extension of Fixed Point PDE Solvers for Optimal Design with Bounded Retardation. The authors are indebted to the other members of this project, namely N. Gauger, E. Ozkaya, C. Kratzenstein and Th. Slawig.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bosse, T., Lehmann, L. & Griewank, A. Adaptive sequencing of primal, dual, and design steps in simulation based optimization. Comput Optim Appl 57, 731–760 (2014). https://doi.org/10.1007/s10589-013-9606-z
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-013-9606-z