Skip to main content
Log in

The generalized trust region subproblem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The interval bounded generalized trust region subproblem (GTRS) consists in minimizing a general quadratic objective, q 0(x)→min, subject to an upper and lower bounded general quadratic constraint, q 1(x)≤u. This means that there are no definiteness assumptions on either quadratic function. We first study characterizations of optimality for this implicitly convex problem under a constraint qualification and show that it can be assumed without loss of generality. We next classify the GTRS into easy case and hard case instances, and demonstrate that the upper and lower bounded general problem can be reduced to an equivalent equality constrained problem after identifying suitable generalized eigenvalues and possibly solving a sparse system. We then discuss how the Rendl-Wolkowicz algorithm proposed in Fortin and Wolkowicz (Optim. Methods Softw. 19(1):41–67, 2004) and Rendl and Wolkowicz (Math. Program. 77(2, Ser. B):273–299, 1997) can be extended to solve the resulting equality constrained problem, highlighting the connection between the GTRS and the problem of finding minimum generalized eigenvalues of a parameterized matrix pencil. Finally, we present numerical results to illustrate this algorithm at the end of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Checking feasibility for GTRS is simple, see Theorem 2.1(i), below.

  2. Note that complementary slackness can be written with a single Lagrange multiplier \(\lambda\in {\mathbb{R}}\) as follows: (q 1(x)−)λ≤0≤(uq 1(x))λ.

  3. EIGIFP is implemented in MATLAB and finds the minimum generalized eigenvalue and eigenvector of the matrix pair (A,B) for positive definite B. It does not involve factorization of the matrices A or B.

  4. Comparing with |x T Bx−max{min{x T Bx,u},l}|, feaseq is less sensitive to the quantity |ul|, the thickness of the feasible region.

  5. Indeed, when B is structured, say, block diagonal with small blocks (size 100 by 100), the GLTR algorithm tends to terminate within 1 second for the easy case and hard case 1 instances, with high accuracy; and within a couple seconds (2 to 10) for hard case 2 instances, with moderate accuracy. In contrast, the other two codes are at most 50 % faster than the time reported in Table 2 for such B.

  6. For consistency, we regenerate the problem instance to make sure that the instances considered in this subsection have minimizer on the lower boundary.

  7. In all our test instances below, they all turned out to have a valid left end point t lying in [t 0+(0.2)3,t 0+1].

  8. We regenerate another instance if A −1 b is an interior solution.

References

  1. Barvinok, A.: Problems of distance geometry and convex properties of quadratic maps. Discrete Comput. Geom. 13(2), 189–202 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barvinok, A.: A remark on the rank of positive semidefinite matrices subject to affine constraints. Discrete Comput. Geom. 25(1), 23–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beck, A.: Quadratic matrix programming. SIAM J. Optim. 17(4), 1224–1238 (2006)

    Article  MathSciNet  Google Scholar 

  4. Beck, A., Eldar, Y.C.: Strong duality in nonconvex quadratic optimization with two quadratic constraints. SIAM J. Optim. 17(3), 844–860 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer, New York (2000)

    Book  MATH  Google Scholar 

  6. Burer, S., Anstreicher, K.M.: Second-order-cone constraints for extended trust-region subproblems. SIAM J. Optim. 23(1), 432–451 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region Methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

    Book  MATH  Google Scholar 

  8. Ding, Y., Ge, D., Wolkowicz, H.: On equivalence of semidefinite relaxations for quadratic matrix programming. Math. Oper. Res. 36(1), 88–104 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Finsler, P.: Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen. Comment. Math. Helv. 9, 188–192 (1937)

    Article  MathSciNet  Google Scholar 

  10. Flippo, O.E., Jansen, B.: Duality and sensitivity in nonconvex quadratic optimization over an ellipsoid. Eur. J. Oper. Res. 94(1), 167–178 (1996)

    Article  MATH  Google Scholar 

  11. Fortin, C., Wolkowicz, H.: The trust region subproblem and semidefinite programming. Optim. Methods Softw. 19(1), 41–67 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gay, D.M.: Computing optimal locally constrained steps. SIAM J. Sci. Stat. Comput. 2, 186–197 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gohberg, I., Lancaster, P., Rodman, L.: Matrices and Indefinite Scalar Products. Birkhauser, Basel (1983)

    MATH  Google Scholar 

  14. Golub, G.H., Ye, Q.: An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems. SIAM J. Sci. Comput. 24(1), 312–334 (2002) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gould, N.I.M., Lucidi, S., Roma, M., Toint, Ph.L.: Solving the trust-region subproblem using the Lanczos method. SIAM J. Optim. 9(2), 504–525 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gould, N.I.M., Robinson, D.P., Sue Thorne, H.: On solving trust-region and other regularised subproblems in optimization. Math. Program. Comput. 2(1), 21–57 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gould, N.I.M., Toint, Ph.L.: A quadratic programming bibliography. Technical report, Rutherford Appleton Laboratory, England (2001). www.optimization-online.org/DB_HTML/2001/02/285.html

  18. Hager, W.W.: Minimizing a quadratic over a sphere. SIAM J. Optim. 12(1), 188–208 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hestenes, M.R., McShane, E.J.: A theorem on quadratic forms and its application in the calculus of variations. Trans. Am. Math. Soc. 47, 501–512 (1940)

    Article  MathSciNet  Google Scholar 

  20. Jin, Q., Fang, S.C., Xing, W.: On the global optimality of generalized trust region subproblems. Optimization 59(8), 1139–1151 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lampe, J., Rojas, M., Sorensen, D.C., Voss, H.: Accelerating the LSTRS algorithm. SIAM J. Sci. Comput. 33(1), 175–194 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lancaster, P., Rodman, L.: Canonical forms for Hermitian matrix pairs under strict equivalence and congruence. SIAM Rev. 47(3), 407–443 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Luo, Z.-Q., Zhang, S.: On extensions of the Frank-Wolfe theorems. Comput. Optim. Appl. 13(1–3), 87–110 (1999). Computational optimization—a tribute to Olvi Mangasarian, Part II

    Article  MATH  MathSciNet  Google Scholar 

  24. Moré, J.J.: Generalizations of the trust region problem. Optim. Methods Softw. 2, 189–209 (1993)

    Article  Google Scholar 

  25. Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4, 553–572 (1983)

    Article  MATH  Google Scholar 

  26. Parlett, B.N.: The Symmetric Eigenvalue Problem. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1998). Corrected reprint of the 1980 original

    Book  MATH  Google Scholar 

  27. Pataki, G.: On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Math. Oper. Res. 23(2), 339–358 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM Rev. 49(3), 371–418 (2007) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rendl, F., Wolkowicz, H.: A semidefinite framework for trust region subproblems with applications to large scale minimization. Math. Program. 77(2, Ser. B), 273–299 (1997)

    MATH  MathSciNet  Google Scholar 

  30. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997). Reprint of the 1970 original, Princeton Paperbacks

    Google Scholar 

  31. Rojas, M., Santos, S.A., Sorensen, D.C.: A new matrix-free algorithm for the large-scale trust-region subproblem. SIAM J. Optim. 11(3), 611–646 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rojas, M., Santos, S.A., Sorensen, D.C.: Algorithm 873: LSTRS: MATLAB software for large-scale trust-region subproblems and regularization. ACM Trans. Math. Softw. 34(2), Art11, 28 (2008)

    Article  MathSciNet  Google Scholar 

  33. Sorensen, D.C.: Minimization of a large-scale quadratic function subject to a spherical constraint. SIAM J. Optim. 7(1), 141–161 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. Stern, R., Wolkowicz, H.: Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations. SIAM J. Optim. 5(2), 286–313 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tao, P.D., An, L.T.H.: Difference of convex functions optimization algorithms (DCA) for globally minimizing nonconvex quadratic forms on Euclidean balls and spheres. Oper. Res. Lett. 19(5), 207–216 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Yakubovich, V.A.: The S-procedure in nonlinear control theory. Vestn. Leningr. Univ. 4, 73–93 (1977). English Translation, original Russian publication in Vestn. Leningr. Univ., Ser. Math. 62–77 (1971)

    Google Scholar 

  37. Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14(1), 245–267 (2003) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author would like to thank Nicholas I.M. Gould for his help concerning the GLTR algorithm and for providing the pre-release version of the software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Wolkowicz.

Additional information

T.K. Pong research supported by AFOSR.

H. Wolkowicz research supported by The Natural Sciences and Engineering Research Council of Canada and by AFOSR.

Appendix: Proof of Theorem 2.1(ii)

Appendix: Proof of Theorem 2.1(ii)

Proposition A.1

Suppose that b=0 and Items 1, 2 and 3 of Assumption 2.1 are satisfied. If GTRS (1.1) is bounded below, then D-GTRS (2.2) is feasible.

Proof

We first consider the case when B is positive semidefinite. Then there exists an invertible matrix P such that

$$ B = P \left[ \begin{array}{c@{\quad }c} 0&0\\ 0&I \end{array}\right] P^T. $$

Thus, after a change of variables y=P T x, GTRS (1.1) can be equivalently written as

$$ \begin{array}{r@{\quad }l} \inf& q_0(y):= \begin{bmatrix} y_1\\y_2 \end{bmatrix} ^T \left[ \begin{array}{c@{\quad }c} \bar{A}_1&\bar{A}_2^T\\ \bar{A}_2& \bar{A}_3 \end{array}\right] \begin{bmatrix} y_1\\y_2 \end{bmatrix} - 2 \begin{bmatrix} \bar{a}_1\\ \bar{a}_2 \end{bmatrix} ^T \begin{bmatrix} y_1\\y_2 \end{bmatrix} \\ \mbox{s.t.} & \ell\leq\|y_2\|^2 \leq u, \end{array} $$
(A.1)

where

$$ y = \begin{bmatrix} y_1\\y_2 \end{bmatrix},\quad \bar{A} = \left[ \begin{array}{c@{\quad }c} \bar{A}_1&\bar{A}_2^T\\ \bar{A}_2& \bar{A}_3 \end{array}\right] = P^{-1}AP^{-T},\quad \bar{a} = \begin{bmatrix} \bar{a}_1\\ \bar{a}_2 \end{bmatrix} = P^{-1}a. $$
(A.2)

By our assumptions, the program (A.1) is bounded below. Since

$$q_0(y) = y_1^T\bar{A}_1y_1 + 2y_2^T\bar{A}_2y_1 + y_2^T\bar{A}_3y_2 - 2\bar{a}_1^Ty_1 - 2\bar{a}_2^T y_2, $$

and the constraint does not involve y 1, we must have

$$ \bar{A}_1\succeq0,\qquad \bar{A}_2^Ty_2 - \bar{a}_1\in \operatorname{{Range}}(\bar{A}_1),\quad \forall\ \ell\le \|y_2\|^2\le u. $$
(A.3)

Notice that u>0 since the RICQ (2.6) holds. Hence, the second relation in (A.3) implies

$$ \operatorname{{Range}}\bigl(\bar{A}_2^T\bigr)\subseteq \operatorname{{Range}}(\bar{A}_1)\quad \mathrm{and}\quad \bar{a}_1\in \operatorname{{Range}}(\bar{A}_1). $$
(A.4)

By (A.3), (A.4) and a consideration of the Schur complement, we conclude that for all sufficiently large λ>0, \(\bar{A}_{3}+\lambda I \succ0\) and

$$ \bar{A} + \lambda \left[ \begin{array}{c@{\quad }c} 0&0\\ 0&I \end{array}\right] = \left[ \begin{array}{c@{\quad }c} \bar{A}_1&\bar{A}_2^T\\ \bar{A}_2& \bar{A}_3+\lambda I \end{array} \right] \succeq0. $$
(A.5)

Moreover, from (A.4), we see that, for all sufficiently large λ>0,

$$\operatorname{{Range}}\bigl(\bar{A}_1 - \bar{A}_2^T[\bar{A}_3+\lambda I]^{-1}\bar{A}_2\bigr) = \operatorname{{Range}}(\bar{A}_1), $$

and hence \(\bar{a}_{1}\in \operatorname{{Range}}(\bar{A}_{1} - \bar{A}_{2}^{T}[\bar{A}_{3}+\lambda I]^{-1}\bar{A}_{2})\). Thus, for sufficiently large λ>0, the system of equations

$$ \left[ \begin{array}{c@{\quad }c} \bar{A}_1 - \bar{A}_2^T[\bar{A}_3+\lambda I]^{-1}\bar{A}_2 & 0\\ 0& \bar{A}_3+\lambda I \end{array} \right] \left[ \begin{array}{c} w_1\\ w_2 \end{array} \right] = \left[ \begin{array}{c} \bar{a}_1 - \bar{A}_2^T[\bar{A}_3+\lambda I]^{-1}\bar{a}_2\\ \bar{a}_2 \end{array} \right] $$
(A.6)

is consistent. Since

$$\begin{aligned} &\left[ \begin{array}{c@{\quad }c} \bar{A}_1 & \bar{A}_2^T\\ \bar{A}_2 & \bar{A}_3+\lambda I \end{array}\right] \\ & = \left[ \begin{array}{c@{\ \ }c} I & \bar{A}_2^T[\bar{A}_3\,{+}\,\lambda I]^{-1}\\ 0 & I \end{array}\right] \left[ \begin{array}{c@{\ \ }c} \bar{A}_1 \,{-}\, \bar{A}_2^T[\bar{A}_3\,{+}\,\lambda I]^{-1}\bar{A}_2 & 0\\ 0& \bar{A}_3\,{+}\,\lambda I \end{array}\right] \left[ \begin{array}{c@{\ \ }c} I & 0\\ {[}\bar{A}_3\,{+}\,\lambda I]^{-1}\bar{A}_2 & I \end{array}\right], \end{aligned}$$

and

$$\begin{aligned} \left[ \begin{array}{c@{\quad }c} I & \bar{A}_2^T[\bar{A}_3+\lambda I]^{-1}\\ 0 & I \end{array} \right] ^{-1} \left[ \begin{array}{c} \bar{a}_1\\ \bar{a}_2 \end{array}\right] =& \left[ \begin{array}{c@{\quad }c} I & -\bar{A}_2^T[\bar{A}_3+\lambda I]^{-1}\\ 0 & I \end{array} \right] \left[ \begin{array}{c} \bar{a}_1\\ \bar{a}_2 \end{array} \right]\\ =& \left[ \begin{array}{c} \bar{a}_1 - \bar{A}_2^T[\bar{A}_3+\lambda I]^{-1}\bar{a}_2\\ \bar{a}_2 \end{array}\right], \end{aligned}$$

we see from the consistency of (A.6) that for sufficiently large λ>0. From the definition of \(\bar{a}\) and \(\bar{A}\) in (A.2), we obtain immediately that \(a\in \operatorname{{Range}}(A + \lambda B)\) for sufficiently large λ>0. This together with (A.5) proves that D-GTRS is feasible.

The case when B is negative semidefinite can be tackled similarly.

Next, we consider the case when B is indefinite. Suppose to the contrary that D-GTRS is infeasible. Then either AλB is not positive semidefinite for any \(\lambda\in {\mathbb{R}}\), or there exists λ with AλB⪰0 but all such λ satisfy \(a\notin \operatorname{{Range}}(A - \lambda B)\).

Case 1:

AλB is not positive semidefinite for all \(\lambda\in {\mathbb{R}}\). By [24, Theorem 2.3], there exists u satisfying u T Au <0 and u T Bu =0.

Fix any s∈[,u]. For the above u and each t>0, we would like to find a solution x t of (x+tu )T B(x+tu )=s that is uniformly bounded in t. For s=0, we just take x t =0. In the case when s>0, the x we seek has to satisfy

$$ x^TBx + 2tx^TBu^*=s. $$

Let B=PDP T for some orthogonal matrix P and diagonal matrix D, and let β i denote the ith diagonal entry of D. Also, let \(\tilde{u}^{*}\) denote P T u . Since B is indefinite, there exists an index i 0 such that \(\beta_{i_{0}}>0\). Consider the quadratic equation

$$ \beta_{i_0} r^2 + 2 t\beta_{i_0}{\tilde{u}^*_{i_0}}r - s = 0. $$

It is clear that the solutions of the above quadratic equation are

$$\begin{aligned} r^1_t = \frac{-2 t\beta_{i_0}{\tilde{u}^*_{i_0}}+\sqrt{(2 t\beta _{i_0}{\tilde{u}^*_{i_0}})^2 + 4s\beta_{i_0}}}{ 2\beta_{i_0}}=\frac{2s}{2 t\beta_{i_0}{\tilde{u}^*_{i_0}}+\sqrt{(2 t\beta_{i_0}{\tilde{u}^*_{i_0}})^2 + 4s\beta_{i_0}}}, \\ r^2_t = \frac{-2 t\beta_{i_0}{\tilde{u}^*_{i_0}}-\sqrt{(2 t\beta _{i_0}{\tilde{u}^*_{i_0}})^2 + 4s\beta_{i_0}}}{2\beta_{i_0}} =\frac{2s}{2 t\beta_{i_0}{\tilde{u}^*_{i_0}}-\sqrt{(2 t\beta _{i_0}{\tilde{u}^*_i})^2 + 4s\beta_{i_0}}}. \end{aligned}$$

Moreover, it is easy to see that \(r^{1}_{t}\) is uniformly bounded for t>0 when \(\tilde{u}^{*}_{i_{0}}\ge0\), while \(r^{2}_{t}\) is uniformly bounded for t>0 when \(\tilde{u}^{*}_{i_{0}}\le0\). Define

$$x_t = \begin{cases} r^1_tPe_{i_0}& \mathrm{if}\ \tilde{u}^*_{i_0}\ge0,\\ r^2_tPe_{i_0}& \mathrm{otherwise}, \end{cases} $$

where \(e_{i_{0}}\) is the vector which is one at the i 0th entry and is zero otherwise. Then {x t } is uniformly bounded in t>0 and satisfies \(x_{t}^{T}Bx_{t} + 2tx_{t}^{T}Bu^{*}=s\). The case when s<0 can be considered similarly, by picking the index such that β i <0.

Next, since {x t } is bounded for t>0 and u T Au <0, we see that

$$\begin{aligned} &\bigl(x_t+tu^*\bigr)^TA\bigl(x_t+tu^* \bigr)-2a^T\bigl(x_t+tu^*\bigr)\\ &\quad {} = x_t^TAx_t +2tx_t^TAu^* + t^2 {u^*}^TAu^*-2a^T \bigl(x_t+tu^*\bigr)\rightarrow-\infty \end{aligned}$$

as t→∞. This together with the feasibility of x t +tu for all t>0 contradicts the boundedness of GTRS.

Case 2:

There exists λ with AλB⪰0 but all such λ satisfy \(a\notin \operatorname{{Range}}(A - \lambda B)\). In this case, we apply [4, Theorem A.2] to derive a contradiction. To this end, let s∈[,u] be such that the set {x: x T Bx=s} is nonempty. Then, by assumption, we see that the equality constrained GTRS (3.1), with this s, is bounded below. Thus, f 2(x):=x T Ax−2a T xL is nonnegative on the set {x: f 1(x)=0}, where L is a lower bound of the optimal value of the equality constrained GTRS, and f 1(x):=x T Bxs. Furthermore, since B is indefinite, there exist x 1, x 2 such that

$$ f_1(x_1)> 0\ \ \mathrm{and}\ \ f_1(x_2)<0. $$
(A.7)

Using these and invoking [4, Theorem A.2], we conclude that there exists μ such that

$$ \left( \begin{array}{c@{\quad }c} -L +\mu s& -a^T\\ -a& A -\mu B \end{array} \right) \succeq0. $$

From Schur complement, this implies that AμB⪰0 and \(a\in \operatorname{{Range}}(A - \mu B)\). Thus, D-GTRS is feasible, a contradiction to our assumption.

Combining Cases 1 and 2, we conclude that D-GTRS is also feasible when B is indefinite. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pong, T.K., Wolkowicz, H. The generalized trust region subproblem. Comput Optim Appl 58, 273–322 (2014). https://doi.org/10.1007/s10589-013-9635-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9635-7

Keywords

Navigation