Skip to main content
Log in

Efficient parallel solution of large-scale nonlinear dynamic optimization problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper presents a decomposition strategy applicable to DAE constrained optimization problems. A common solution method for such problems is to apply a direct transcription method and solve the resulting nonlinear program using an interior-point algorithm. For this approach, the time to solve the linearized KKT system at each iteration typically dominates the total solution time. In our proposed method, we exploit the structure of the KKT system resulting from a direct collocation scheme for approximating the DAE constraints in order to compute the necessary linear algebra operations on multiple processors. This approach is applied to find the optimal control profile of a combined cycle power plant with promising results on both distributed memory and shared memory computing architectures with speedups of over 50 times possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Åkesson, J., Årzén, K.E., Gäfvert, M., Bergdahl, T., Tummescheit, H.: Modeling and optimization with Optimica and JModelica.org–languages and tools for solving large-scale dynamic optimization problem. Comput. Chem. Eng. 34(11), 1737–1749 (2010). doi:10.1016/j.compchemeng.2009.11.011

    Article  Google Scholar 

  2. Amestoy, P., Duff, I., L’Excellent, J.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2), 501–520 (2000)

    Article  MATH  Google Scholar 

  3. Andersson, J., Åkesson, J., Casella, F., Diehl, M.: (2011, March). Integration of CasADi and JModelica.org. In 8th International Modelica Conference 2011, Dresden, Germany

  4. Andersson, J., Åkesson, J., Diehl, M.: (2012) CasADi: A symbolic package for automatic differentiation and optimal control. In Recent Advances in Algorithmic, Differentiation. Springer 297–307

  5. Benson, D.A., Huntington, G.T., Thorvaldsen, T.P., Rao, A.V.: Direct trajectory optimization and costate estimation via an orthogonal collocation method. J. Guid. Control. Dyn. 29(6), 1435–1440 (2006)

    Article  Google Scholar 

  6. Biegler, L., Cervantes, A., Wächter, A.: Advances in simultaneous strategies for dynamic process optimization. Chem. Eng. Sci. 57(4), 575–593 (2002)

    Article  Google Scholar 

  7. Biegler, L., Grossmann, I.: Retrospective on optimization. Comput. Chem. Eng. 28(8), 1169–1192 (2004)

    Article  Google Scholar 

  8. Biegler, L. T.: (2010). Nonlinear programming: concepts, algorithms, and applications to chemical processes, Vol. 10. SIAM

  9. Brenan, K. E., Campbell, S. L.-V., Petzold, L. R.: (1989). Numerical solution of initial-value problems in differential-algebraic equations, Vol. 14. SIAM

  10. Casella, F., Donida, F., Åkesson, J.: (2011, August) Object-oriented modeling and optimal control: A case study in power plant start-up. In 18th IFAC World Congress, Milano, Italy

  11. Cervantes, A., Biegler, L.: A stable elemental decomposition for dynamic process optimization. J. Comput. Appl. Math. 120(1), 41–57 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cervantes, A., Wächter, A., Tütüncü, R., Biegler, L.: A reduced space interior point strategy for optimization of differential algebraic systems. Comput. Chem. Eng. 24(1), 39–51 (2000)

    Article  Google Scholar 

  13. Darby, C.L., Hager, W.W., Rao, A.V.: Direct trajectory optimization using a variable low-order adaptive pseudospectral method. J. Spacecr. Rockets 48, 433–445 (2011)

    Article  Google Scholar 

  14. DeMiguel, V., Nogales, F.: On decomposition methods for a class of partially separable nonlinear programs. Math. Oper. Res. 33(1), 119–139 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Diehl, M., Bock, H., Schlöder, J., Findeisen, R., Nagy, Z., Allgöwer, F.: Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J. Process Control 12(4), 577–585 (2002)

    Article  Google Scholar 

  16. Fornberg, B.: A practical guide to pseudospectral methods, vol. 1. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  17. Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM review 44(4), 525–597 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Garg, D., Patterson, M., Hager, W.W., Rao, A.V., Benson, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11), 1843–1851 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Garg, D., Patterson, M.A., Francolin, C., Darby, C.L., Huntington, G.T., Hager, W.W., Rao, A.V.: Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method. Comput. Optim. Appl. 49(2), 335–358 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Goulart, P., Kerrigan, E., Ralph, D.: Efficient robust optimization for robust control with constraints. Math. Progr. 114(1), 115–147 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hart, W., Laird, C., Watson, J., Woodruff, D.: Pyomo-optimization modeling in Python, vol. 67. Springer, New York (2012)

    Book  MATH  Google Scholar 

  22. Hartwich, A., Marquardt, W.: Dynamic optimization of the load change of a large-scale chemical plant by adaptive single shooting. Comput. Chem. Eng. 34(11), 1873–1889 (2010)

    Article  Google Scholar 

  23. Hartwich, A., Stockmann, K., Terboven, C., Feuerriegel, S., Marquardt, W.: Parallel sensitivity analysis for efficient large-scale dynamic optimization. Optim. Eng. 12(4), 489–508 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Houska, B., Ferreau, H.J., Diehl, M.: ACADO toolkit-An open-source framework for automatic control and dynamic optimization. Optim. Control Appl. Methods 32(3), 298–312 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. HSL (2011) A collection of Fortran codes for large scale scientific computation. HSL. http://www.hsl.rl.ac.uk

  26. JModelica.org (2012a). CombinedCycle.mo. https://svn.jmodelica.org/trunk/Python/src/pyjmi/examples/files. [Revision 4090]

  27. JModelica.org (2012b). CombinedCycleStartup.mop. https://svn.jmodelica.org/trunk/Python/src/pyjmi/examples/files. [Revision 4090]

  28. Kameswaran, S., Biegler, L.T.: Convergence rates for direct transcription of optimal control problems using collocation at Radau points. Comput. Optim. Appl. 41(1), 81–126 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kocak, S., Akay, H.: Parallel Schur complement method for large-scale systems on distributed memory computers. Appl. Math. Model. 25(10), 873–886 (2001)

    Article  MATH  Google Scholar 

  30. Laird, C., Biegler, L.: Large-scale Nonlinear Programming for Multi-scenario Optimization. In: Bock, H.G., Kostina, E., Phu, H.X., Ranacher, R. (eds.) Modeling, simulation and optimization of complex processes, pp. 323–326. Springer, New York (2008)

    Chapter  Google Scholar 

  31. Laird, C., Biegler, L., van Bloemen Waanders, B., Bartlett, R.: Contamination source determination for water networks. J. Water Res. Plan. Manag. 131(2), 125–134 (2005)

    Article  Google Scholar 

  32. Laird, C., Wong, A., Akesson, J.: (2011) Parallel solution of large-scale dynamic optimization problems. In 21st European Symposium on Computer Aided Process Engineering-ESCAPE, Vol. 21

  33. Lang, Y.-D., Biegler, L.: A software environment for simultaneous dynamic optimization. Comput. Chem. Eng. 31(8), 931–942 (2007)

    Article  Google Scholar 

  34. Leineweber, D., Bauer, I., Bock, H., Schlöder, J.: An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. part 1: theoretical aspects. Comput. Chem. Eng. 27(2), 157–166 (2003)

    Article  Google Scholar 

  35. Mattsson, S., Söderlind, G.: Index reduction in differential-algebraic equations using dummy derivatives. SIAM J. Sci. Comput. 14(3), 677–692 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  36. Modelica Association (2007) The Modelica language specification version 3.0

  37. Rao, C.V., Wright, S.J., Rawlings, J.B.: Application of interior-point methods to model predictive control. J. Optim. Theory Appl. 99(3), 723–757 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput Syst 20(3), 475–487 (2004)

    Article  Google Scholar 

  39. Scheu, H., Marquardt, W.: Sensitivity-based coordination in distributed model predictive control. J. Process Control 21(5), 715–728 (2011)

    Article  Google Scholar 

  40. Scott, J.: Parallel frontal solvers for large sparse linear systems. ACM Trans. Math. Softw. (TOMS) 29(4), 395–417 (2003)

    Article  MATH  Google Scholar 

  41. Tanaka, R., Martins, C.: Parallel dynamic optimization of steel risers. J. Offshore Mech. Arct. Eng. 133(1), 011302–011309 (2011)

    Article  Google Scholar 

  42. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Progr. 106(1), 25–58 (2006)

    Article  MATH  Google Scholar 

  43. Word, D., Cummings, D., Burke, D., Iamsirithaworn, S., Laird, C.: A nonlinear programming approach for estimation of transmission parameters in childhood infectious disease using a continuous time model. J. R. Soc. Interface 9(73), 1983–1997 (2012)

    Article  Google Scholar 

  44. Zavala, V., Biegler, L.: Large-scale parameter estimation in low-density polyethylene tubular reactors. Ind. Eng. Chem. Res. 45(23), 7867–7881 (2006)

    Article  Google Scholar 

  45. Zavala, V., Laird, C., Biegler, L.T.: Interior-point decomposition approaches for parallel solution of large-scale nonlinear parameter estimation problems. Chem. Eng. Sci. 63(19), 4834–4845 (2008)

    Article  Google Scholar 

  46. Zhu, Y. Laird, C.: (2008) A parallel algorithm for structured nonlinear programming. In Proceeding of 5th International Conference on Foundations of Computer-Aided Process Operation, FOCAPO, pp. 345–348

  47. Zhu, Y., Legg, S., Laird, C.: (2009) Optimal design of cryogenic air separation columns under uncertainty. Computers & Chemical Engineering 34. Selected papers from the 7th International Conference on the Foundations of Computer-Aided Process Design (FOCAPD)

  48. Zhu, Y., Legg, S., Laird, C.: Optimal operation of cryogenic air separation systems with demand uncertainty and contractual obligations. Chem. Eng. Sci. 66(5), 953–963 (2011)

    Article  Google Scholar 

  49. Zhu, Y., Word, D., Siirola, J., Laird, C.: Exploiting modern computing architectures for efficient large-scale nonlinear programming. Comput. Aided Chem. Eng. 27, 783–788 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Francesco Casella for providing the combined cycle power plant model used in this work and Joel Andersson for his assistance with interfacing our software with CasADi. The authors gratefully acknowledge partial financial support for Daniel Word provided by Sandia National Laboratories and the Office of Advanced Scientific Computing Research within the DOE Office of Science as part of the Applied Mathematics program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U. S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000. Thanks is also extended for financial support for Jia Kang provided by the National Science Foundation Cyber-Enabled Discovery and Innovation (CDI)-Type II. The authors gratefully acknowledge partial financial support for Carl Laird and Daniel Word from the National Science Foundation (CAREER Grant CBET# 0955205). The authors gratefully acknowledges financial support for Johan Akesson from the Swedish Science Foundation through the grant Lund Center for Control of Complex Engineering Systems (LCCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl D. Laird.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Word, D.P., Kang, J., Akesson, J. et al. Efficient parallel solution of large-scale nonlinear dynamic optimization problems. Comput Optim Appl 59, 667–688 (2014). https://doi.org/10.1007/s10589-014-9651-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9651-2

Keywords

Navigation