Skip to main content
Log in

An efficient gradient method using the Yuan steplength

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We propose a new gradient method for quadratic programming, named SDC, which alternates some steepest descent (SD) iterates with some gradient iterates that use a constant steplength computed through the Yuan formula. The SDC method exploits the asymptotic spectral behaviour of the Yuan steplength to foster a selective elimination of the components of the gradient along the eigenvectors of the Hessian matrix, i.e., to push the search in subspaces of smaller and smaller dimensions. The new method has global and \(R\)-linear convergence. Furthermore, numerical experiments show that it tends to outperform the Dai–Yuan method, which is one of the fastest methods among the gradient ones. In particular, SDC appears superior as the Hessian condition number and the accuracy requirement increase. Finally, if the number of consecutive SD iterates is not too small, the SDC method shows a monotonic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akaike, H.: On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method. Ann. Inst. Stat. Math. Tokyo 11, 1–16 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barzilai, J., Borwein, J.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Birgin, E., Martínez, J., Raydan, M.: Spectral projected gradient methods: review and perspectives. J. Stat. Softw. (2012, to appear)

  4. Bonettini, S., Landi, G., Loli Piccolomini, E., Zanni, L.: Scaling techniques for gradient projection-type methods in astronomical image deblurring. Int. J. Comput. Math. 90(1), 9–29 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cauchy, A.: Méthodes générales pour la résolution des systèmes d’équations simultanées. CR. Acad. Sci. Par. 25, 536–538 (1847)

    Google Scholar 

  6. Dai, Y.H.: Alternate step gradient method. Optimization 52(4–5), 395–415 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dai, Y.H., Fletcher, R.: Projected Barzilai–Borwein methods for large-scale box-constrained quadratic programming. Numer. Math. 100(1), 21–47 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dai, Y.H., Hager, W., Schittkowski, K., Zhang, H.: The cyclic Barzilai–Borwein method for unconstrained optimization. IMA J. Numer. Anal. 26(3), 604–627 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dai, Y.H., Liao, L.Z.: \(R\)-linear convergence of the Barzilai and Borwein gradient method. IMA J. Numer. Anal. 22(1), 1–10 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dai, Y.H., Yuan, Y.: Alternate minimization gradient method. IMA J. Numer. Anal. 23, 377–393 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dai, Y.H., Yuan, Y.: Analysis of monotone gradient methods. J. Ind. Manag. Optim. 1, 181–192 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. De Angelis, P., Toraldo, G.: On the identification property of a projected gradient method. SIAM J. Numer. Anal. 30(5), 1483–1497 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. De Asmundis, R., di Serafino, D., Landi, G.: On the regularizing behavior of recent gradient methods in the solution of linear ill-posed problems (2014). http://www.optimization-online.org/DB_HTML/2014/06/4393.html

  14. De Asmundis, R., di Serafino, D., Riccio, F., Toraldo, G.: On spectral properties of steepest descent methods. IMA J. Numer. Anal. 33, 1416–1435 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. van den Doel, K., Ascher, U.: The chaotic nature of faster gradient descent methods. J. Sci. Comput. 51(3), 560–581 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1, 586–598 (2007)

    Article  Google Scholar 

  17. Fletcher, R.: Low storage method for uncostrained optimization. In: Allgower, E.L., Georg, K. (eds.) Computational Solution of Nonlinear Systems of Equations. Lectures in Applied Mathematics, vol. 26, pp. 165–179. AMS Publications, Providence, RI (1990)

  18. Fletcher, R.: On the Barzilai–Borwein method. In: Qi, L., Teo, K., Yang, X. (eds.) Optimization and Control with Applications. Applied Optimization Series, vol. 96, pp. 235–256. Springer, New York, NY (2005)

  19. Fletcher, R.: A limited memory steepest descent method. Math. Program. Ser. A 135, 413–436 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Frassoldati, G., Zanni, L., Zanghirati, G.: New adaptive stepsize selections in gradient methods. J. Ind. Manag. Optim. 4(2), 299–312 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Friedlander, A., Martínez, J., Molina, B., Raydan, M.: Gradient method with retards and generalizations. SIAM J. Numer. Anal. 36, 275–289 (1999)

    Article  MathSciNet  Google Scholar 

  22. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Num. Anal. 23, 707–716 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Huang, H.: Efficient reconstruction of 2D images and 3D surfaces. Ph.D. Thesis, University of BC, Vancouver (2008)

  24. Lamotte, J.L., Molina, B., Raydan, M.: Smooth and adaptive gradient method with retards. Math. Comput. Model. 36(9–10), 1161–1168 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Loosli, G., Canu, S.: Quadratic programming and machine learning large scale problems and sparsity. In: Siarry, P. (ed.) Optimization in Signal and Image Processing, pp. 111–135. Wiley ISTE, Hoboken, NJ (2009)

  26. Moré, J., Toraldo, G.: Algorithms for bound constrained quadratic programming problems. Numer. Math. 55, 377–400 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nocedal, J., Sartenaer, A., Zhu, C.: On the behavior of the gradient norm in the steepest descent method. Comput. Optim. Appl. 22, 5–35 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Raydan, M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13, 321–326 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7, 26–33 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Raydan, M., Svaiter, B.: Relaxed steepest descent and Cauchy–Barzilai–Borwein method. Comput. Optim. Appl. 21, 155–167 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yuan, Y.: A new stepsize for the steepest descent method. J. Comp. Math. 24, 149–156 (2006)

    MATH  Google Scholar 

  32. Yuan, Y.: Step-sizes for the gradient method. AMS/IP Stud. Adv. Math. 42(2), 785–796 (2008)

    Google Scholar 

  33. Zhou, B., Gao, L., Dai, Y.H.: Gradient methods with adaptive step-sizes. Comput. Optim. Appl. 35(1), 69–86 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We wish to thank the anonymous referees for their constructive and detailed comments, which helped to improve the quality of this paper. This work was partially supported by INdAM-GNCS (2013 Project Numerical methods and software for large-scale optimization with applications to image processing and 2014 Project First-order optimization methods for image restoration and analysis), by the National Science Foundation (Grants 1016204 and 1115568), and by the Office of Naval Research (Grant N00014-11-1-0068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Toraldo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Asmundis, R., di Serafino, D., Hager, W.W. et al. An efficient gradient method using the Yuan steplength. Comput Optim Appl 59, 541–563 (2014). https://doi.org/10.1007/s10589-014-9669-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9669-5

Keywords

Navigation