Abstract
In this paper, we propose a robust sequential quadratic programming (SQP) method for nonlinear programming without using any explicit penalty function and filter. The method embeds the modified QP subproblem proposed by Burke and Han (Math Program 43:277–303, 1989) for the search direction, which overcomes the common difficulty in the traditional SQP methods, namely the inconsistency of the quadratic programming subproblems. A non-monotonic technique is employed further in a framework in which the trial point is accepted whenever there is a sufficient relaxed reduction of the objective function or the constraint violation function. A forcing sequence possibly tending to zero is introduced to control the constraint violation dynamically, which is able to prevent the constraint violation from over-relaxing and plays a crucial role in global convergence and the local fast convergence as well. We prove that the method converges globally without the Mangasarian–Fromovitz constraint qualification (MFCQ). In particular, we show that any feasible limit point that satisfies the relaxed constant positive linear dependence constraint qualification is also a Karush–Kuhn–Tucker point. Under the strict MFCQ and the second order sufficient condition, furthermore, we establish the superlinear convergence. Preliminary numerical results show the efficiency of our method.



Similar content being viewed by others
References
Anitescu, M.: Degenerate nonlinear programming with a quadratic growth condition. SIAM J. Optim. 10(4), 1116–1135 (2000)
Andreani, R., Haeser, G., Schuverdt, M., Silva, P.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. (2011). doi:10.1007/s10107-011-0456-0
Andreani, R., Martinez, J.M., Schuverdt, M.L.: On the relation between constant positive linear dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125, 473–485 (2005)
Bielschowsky, R.H., Gomes, F.A.M.: Dynamical control of infeasibility in nonlinearly constrained optimization. SIAM J. Optim. 19(3), 1299–1325 (2008)
Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, PhL: CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21, 123–160 (1995)
Bonnans, J.F., Gilbert, JCh., Lemaréchal, C., Sagastizábal, C.: Numerical Optimization: Theoretical and Practical Aspects, 2nd edn. Springer, Berlin (2006)
Boggs, P.T., Tolle, J.W., Wang, P.: On the local convergence of quasi-newton methods for constrained optimization. SIAM J. Control Optim. 20, 161–171 (1982)
Bonnans, J.F., Ioffe, A.: Second-order sufficiency and quadratic growth for nonisolated minima. Math. Oper. Res. 20(4), 801–817 (1995)
Burke, J.V., Han, S.P.: A robust sequential quadratic programming method. Math. Program. 43, 277–303 (1989)
Byrd, R., Lopez-Calva, G., Nocedal, J.: A line search exact penalty method using steering rules. Math. Program. 133(1–2), 39–73 (2012)
Chamberlain, R.M., Powell, M.J.D., Lemarechal, C., Pedersen, H.C.: The watchdog technique for forcing convergence in algorithms for constrained optimization. Math. Program. Study 16, 1–17 (1982)
Dolan, E.D., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)
Fernández, D., Izmailov, A.F., Solodov, M.V.: Sharp primal superlinear convergence results for some Newtonian methods for constrained optimization. SIAM J. Optim. 20(6), 3312–3334 (2010)
Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. 91, 239–269 (2002)
Fletcher, R., Leyffer, S., Toint, PhL: On the global convergence of a filter-SQP algorithm. SIAM J. Optim. 13(1), 44–59 (2002)
Fletcher, R.: A sequential linear constraints programming algorithm for NLP. SIAM J. Optim. 22(3), 772–794 (2012)
Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002)
Gould, N., Toint, PhL: Nonlinear programming without a penalty function or a filter. Math. Program. 122(1), 155–196 (2010)
Gould, N., Robinson, D.P., Toint, Ph.L.: Corrigendum: Nonlinear Programming Without a Penalty Function or a Filter. NAXYS Technical Report naxys-07-2011, Namur Center for Complex Systems (NAXYS) (2011)
Gould, N., Robinson, D.P.: A second derivative SQP method: global convergence. SIAM J. Optim. 20(4), 2023–2048 (2010)
Gould, N., Robinson, D.P.: A second derivative SQP method: local convergence. SIAM J. Optim. 20(4), 2049–2079 (2010)
Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)
Hager, W.W.: Stabilized sequential quadratic programming. Comput. Optim. Appl. 12, 253–273 (1999)
Han, S.P.: Superlinearly convergent variable metric algorithms for general nonlinear programming problems. Math. Program. 11, 263–282 (1976)
Han, S.P.: A globally convergent method for nonlinear programming. J. Optim. Theory Appl. 22, 297–309 (1977)
Hestenes, M.R.: Optimization Theory: The Finite-Dimensional Case. Wiley, New York, NY (1975)
Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Springer, Berlin (1981)
Kyparisis, J.: On uniqueness of Kuhn–Tucker multipliers in nonlinear programming. Math. Program. 32(2), 242–246 (1984)
Liu, X.W., Yuan, Y.X.: A sequential quadratic programming method without a penalty function or a filter for nonlinear equality constrained optimization. SIAM J. Optim. 21(2), 545–571 (2011)
Morales, J.L., Nocedal, J., Wu, Y.: A sequential quadratic programming algorithm with an additional equality constrained phase. IMA J. Numer. Anal. (2011). doi:10.1093/imanum/drq037
Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, New York (2006)
Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Waston, G.A. (ed.) Numerical Analysis, Proceedings, Biennial Conference, Dundee 1977. Lecture Notes in Mathematics 630, pp. 144–157. Springer, Berlin (1978)
Powell, M.J.D.: Variable metric methods for constrained optimization. In: Bachem, A., Grotschel, M., Korte, B. (eds.) Mathematical Programming: The State of Art, Bonn, 1982. Springer, Berlin (1983)
Qi, L., Wei, Z.: On the constant positive linear dependence condition and its application to SQP methods. SIAM J. Optim. 10, 963–981 (2000)
Shen, C.G., Leyffer, S., Fletcher, R.: A nonmonotone filter method for nonlinear optimization. Comput. Optim. Appl. 52, 583–607 (2012)
Ulbrich, M., Ulbrich, S.: Nonmonotone trust-region methods for nonlinear equality constrained optimization without a penalty function. Math. Program. 95, 103–135 (2003)
Wright, S.J.: Superlinear convergence of a stabilized SQP method to a degenerate solution. Comput. Optim. Appl. 11(3), 253–275 (1998)
Wright, S.J.: Modifying SQP for degenerate problems. SIAM J. Optim. 13(2), 470–497 (2002)
Wright, S.J.: Constraint identification and algorithm stabilization for degenerate nonlinear programs. Math. Program. 95(1), 137–160 (2003)
Wright, S.J.: An algorithm for degenerate nonlinear programming with rapid local convergence. SIAM J. Optim. 15(3), 673–696 (2005)
Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: motivation and global convergence. SIAM J. Optim. 16, 1–31 (2005)
Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: local convergence. SIAM J. Optim. 16, 32–48 (2005)
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)
Xue, W.J., Shen, C.G., Pu, D.G.: A penalty-function-free line search SQP method for nonlinear programming. J. Comput. Appl. Math. 228(1), 313–325 (2009)
Zhang, J.L., Zhang, X.S.: A modified SQP method with nonmonotone linsearch technique. J. Glob. Optim. 21, 201–218 (2001)
Zhou, G.L.: A modified SQP method and its global convergence. J. Glob. Optim. 11, 193–205 (1997)
Acknowledgments
We are indebted to the editor and two anonymous referees for their many valuable comments and suggestions that have improved the quality of this paper significantly. This research is supported by National Natural Science Foundation of China (Nos. 11101281, 11101257 and 11271259) and Innovation Program of Shanghai Municipal Education Commission (No. 12YZ172).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shen, C., Zhang, LH., Wang, B. et al. Global and local convergence of a nonmonotone SQP method for constrained nonlinear optimization. Comput Optim Appl 59, 435–473 (2014). https://doi.org/10.1007/s10589-014-9675-7
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-014-9675-7