Skip to main content
Log in

Estimation-based metaheuristics for the single vehicle routing problem with stochastic demands and customers

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The vehicle routing problem with stochastic demands and customers (VRPSDC) requires finding the optimal route for a capacitated vehicle that delivers goods to a set of customers, where each customer has a fixed probability of requiring being visited and a stochastic demand. For large instances, the evaluation of the cost function is a primary bottleneck when searching for high quality solutions within a limited computation time. We tackle this issue by using an empirical estimation approach. Moreover, we adopt a recently developed state-of-the-art iterative improvement algorithm for the closely related probabilistic traveling salesman problem. We integrate these two components into several metaheuristics and we show that they outperform substantially the current best algorithm for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bertsimas, D.: Probabilistic combinatorial optimization problems. PhD Thesis, Massachusetts Institute of Technology, Cambridge, (1988)

  2. Jaillet, P.: Probabilistic traveling salesman problems. PhD Thesis, Massachusetts Institute of Technology, Cambridge, (1985)

  3. Jaillet, P.: A priori solution of a travelling salesman problem in which a random subset of the customers are visited. Oper. Res. 36(6), 929–936 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Jézéquel, A.: Probabilistic vehicle routing problems. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, (1985)

  5. Bertsimas, D., Jaillet, P., Odoni, A.: A priori optimization. Oper. Res. 38(6), 1019–1033 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Tillman, F.: The multiple terminal delivery problem with probabilistic demands. Transp. Sci. 3(3), 192–204 (1969)

    Article  Google Scholar 

  7. Bertsimas, D.J.: A vehicle routing problem with stochastic demand. Oper. Res. 40(3), 574–585 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Laporte, G., Louveaux, F., Mercure, H.: The vehicle routing problem with stochastic travel times. Transp. Sci. 26(3), 161–170 (1992)

    Article  MATH  Google Scholar 

  9. Jaillet, P.: Stochastic routing problems. In: Andreatta, G., Mason, F., Serafini, P. (eds.) Advanced School on Stochastics in Combinatorial Optimization, pp. 192–213. World Scientific, Singapore (1987)

    Google Scholar 

  10. Gendreau, M., Laporte, G., Séguin, R.: Stochastic vehicle routing. Eur. J. Oper. Res. 88, 3–12 (1996)

    Article  MATH  Google Scholar 

  11. Laporte, G., Louveaux, F.V., Mercure, H.: Models and exact solutions for a class of stochastic location-routing problems. Eur. J. Oper. Res. 39(1), 71–78 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gendreau, M., Laporte, G., Séguin, R.: An exact algorithm for the vehicle routing problem with stochastic demands and customers. Transp. Sci. 29(2), 143–155 (1995)

    Article  MATH  Google Scholar 

  13. Hjorring, C., Holt, J.: New optimality cuts for a single-vehicle stochastic routing problem. Ann. Oper. Res. 86(0), 569–584 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Laporte, G., Louveaux, F., Van Hamme, L.: An integer L-shaped algorithm for the capacitated vehicle routing problem with stochastic demands. Oper. Res. 50(3), 415–423 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rei, W., Gendreau, M., Soriano, P.: Local branching cuts for the 0–1 integer L-shaped algorithm. Technical Report CIRRELT-2007-23, CIRRELT, Montréal, Canada (2007)

  16. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

  17. Gendreau, M., Laporte, G., Séguin, R.: A tabu search algorithm for the vehicle routing problem with stochastic demands and customers. Oper. Res. 44(3), 469–477 (1996)

    Article  MATH  Google Scholar 

  18. Yang, W., Mathur, K., Ballou, R.H.: Stochastic vehicle routing problem with restocking. Transp. Sci. 34(1), 99–112 (2000)

    Article  MATH  Google Scholar 

  19. Chepuri, K., Homem-de-Mello, T.: Solving the vehicle routing problem with stochastic demands using the cross-entropy method. Ann. Oper. Res. 134(1), 153–181 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete, L., Rossi-Doria, O., Schiavinotto, T.: Hybrid metaheuristics for the vehicle routing problem with stochastic demands. J. Math. Model. Algorithms 5(1), 91–110 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Secomandi, N., Margot, F.: Reoptimization approaches for the vehicle-routing problem with stochastic demands. Oper. Res. 57(1), 214–230 (2009)

    Article  MATH  Google Scholar 

  22. Rei, W., Gendreau, M., Soriano, P.: A hybrid Monte Carlo local branching algorithm for the single vehicle routing problem with stochastic demands. Transp. Sci. 44(1), 136–146 (2010)

    Article  Google Scholar 

  23. Balaprakash, P.: Estimation-based metaheuristics for stochastic combinatorial optimization: Case studies in stochastic routing problems. PhD Thesis, Université Libre de Bruxelles, Brussels, Belgium (2010)

  24. Stewart Jr, W.R., Golden, B.L.: Stochastic vehicle routing: a comprehensive approach. Eur. J. Oper. Res. 14(4), 371–385 (1983)

    Article  MATH  Google Scholar 

  25. Dror, M., Laporte, G., Trudeau, P.: Vehicle routing with stochastic demands: properties and solution frameworks. Transp. Sci. 23(3), 166–176 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Dror, M.: Modeling vehicle routing with uncertain demands as a stochastic program: properties of the corresponding solution. Eur. J. Oper. Res. 64(3), 432–441 (1993)

    Article  MATH  Google Scholar 

  27. Psaraftis, H.: Dynamic vehicle routing: status and prospects. Ann. Oper. Res. 61(1), 143–164 (1995)

    Article  MATH  Google Scholar 

  28. Secomandi, N.: Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands. Comput. Oper. Res. 27(11), 1201–1225 (2000)

    Article  MATH  Google Scholar 

  29. Secomandi, N.: A rollout policy for the vehicle routing problem with stochastic demands. Oper. Res. 49(5), 796–802 (2001)

    Article  MATH  Google Scholar 

  30. Birattari, M., Balaprakash, P., Stützle, T., Dorigo, M.: Estimation-based local search for stochastic combinatorial optimization using delta evaluations: a case study in the probabilistic traveling salesman problem. INFORMS J. Comput. 20(4), 644–658 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Balaprakash, P., Birattari, M., Stützle, T., Dorigo, M.: Adaptive sample size and importance sampling in estimation-based local search for the probabilistic traveling salesman problem. Eur. J. Oper. Res. 199(1), 98–110 (2009)

    Article  MATH  Google Scholar 

  32. Balaprakash, P., Birattari, M., Stützle, T., Yuan, Z., Dorigo, M.: Estimation-based ant colony optimization and local search for the probabilistic traveling salesman problem. Swarm Intell 3(3), 223–242 (2009)

    Article  Google Scholar 

  33. Balaprakash, P., Birattari, M., Stützle, T., Dorigo, M.: Estimation-based metaheuristics for the probabilistic traveling salesman problem. Comput. Oper. Res. 37(11), 1939–1951 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Operations Research and Management Science, vol. 57, pp. 321–353. Kluwar Academic Publishers, Norwell (2002)

    Google Scholar 

  35. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech Concurrent Computation Program Report 826, Caltech, Pasadena, California (1989)

  36. Moscato, P.: Memetic algorithms: a short introduction. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 219–234. McGraw Hill, London (1999)

    Google Scholar 

  37. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  38. Dorigo, M., Birattari, M.: Swarm intelligence. Scholarpedia 2(9), 1462 (2007)

    Article  Google Scholar 

  39. Séguin, R.: Problèmes stochastiques de tournées de véhicules. PhD Thesis, Université de Montréal, Montréal, Canada (1994)

  40. Bowler, N.E., Fink, T.M.A., Ball, R.C.: Characterization of the probabilistic traveling salesman problem. Phys. Rev. E 68(3), 036703–036710 (2003)

    Article  Google Scholar 

  41. Gutjahr, W.J.: A converging ACO algorithm for stochastic combinatorial optimization. In: Albrecht, A., Steinhofl, K. (eds.) Stochastic Algorithms: Foundations and Applications. LNCS, vol. 2827, pp. 10–25. Springer, Berlin (2003)

    Chapter  Google Scholar 

  42. Gutjahr, W.J.: S-ACO: an ant based approach to combinatorial optimization under uncertainty. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M. (eds.) Ant Colony Optimization and Swarm Intelligence, 5th International Workshop, ANTS 2004. LNCS, vol. 3172, pp. 238–249. Springer, Berlin (2004)

    Google Scholar 

  43. Tukey, J.W.: Comparing individual means in the analysis of variance. Biometrics 5(2), 99–114 (1949)

    Article  MathSciNet  Google Scholar 

  44. Rubinstein, R.Y.: Simulation and the Monte Carlo Method. Wiley, New York (1981)

    Book  MATH  Google Scholar 

  45. Bentley, J.L.: Fast algorithms for geometric traveling salesman problems. ORSA J. Comput. 4(4), 387–411 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  46. Bianchi, L., Knowles, J., Bowler, N.: Local search for the probabilistic traveling salesman problem: correction to the 2-p-opt and 1-shift algorithms. Eur. J. Oper. Res. 162, 206–219 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Bianchi, L., Campbell, A.: Extension of the 2-p-opt and 1-shift algorithms to the heterogeneous probabilistic traveling salesman problem. Eur. J. Oper. Res. 176(1), 131–144 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. Merz, P., Freisleben, B.: Memetic algorithms for the traveling salesman problem. Complex Syst. 13(4), 297–345 (2001)

    MATH  MathSciNet  Google Scholar 

  49. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  50. Johnson, D.S., McGeoch, L.A., Rego, C., Glover, F.: 8th DIMACS implementation challenge (2001)

  51. Stützle, T.: ACOTSP: A software package of various ant colony optimization algorithms applied to the symmetric traveling salesman problem (2002)

  52. Penky, J.F., Miller, D.L.: A staged primal-dual algorithm for finding a minimum cost perfect two-matching in an undirected graph. ORSA J. Comput. 6(1), 68–81 (1994)

    Article  Google Scholar 

  53. Johnson, D.S., McGeoch, L.A.: The travelling salesman problem: a case study in local optimization. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, pp. 215–310. Wiley, Chichester (1997)

    Google Scholar 

  54. Balaprakash, P., Birattari, M., Stützle, T., Dorigo, M.: Estimation-based metaheuristics for the the vehicle routing problem with stochastic demands and customers. IRIDIA Supplementary page (2011)

  55. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-Race algorithm: sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) Hybrid Metaheuristics. LNCS, vol. 4771, pp. 113–127. Springer, Berlin (2007)

    Chapter  Google Scholar 

  56. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and iterated F-Race: an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Empirical Methods for the Analysis of Optimization Algorithms. Springer, New York (2010)

    Google Scholar 

Download references

Acknowledgments

This research has been supported by “E-SWARM – Engineering Swarm Intelligence Systems”, an European Research Council Advanced Grant awarded to Marco Dorigo (Grant Number 246939). The authors acknowledge support from the Fonds de la Recherche Scientifique, F.R.S.-FNRS of the French Community of Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanna Balaprakash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaprakash, P., Birattari, M., Stützle, T. et al. Estimation-based metaheuristics for the single vehicle routing problem with stochastic demands and customers. Comput Optim Appl 61, 463–487 (2015). https://doi.org/10.1007/s10589-014-9719-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9719-z

Keywords

Navigation