Abstract
We consider a nonlinear nonconvex network design problem that arises, for example, in natural gas or water transmission networks. Given is such a network with active and passive components, that is, valves, compressors, control valves (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes in the network. The active elements are associated with costs when used. Besides flow conservation constraints in the nodes, the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. The problem is to compute a cost minimal setting of the active components and numerical values for the flow and node potentials. We examine different (convex) relaxations for a subproblem of the design problem and benefit from them within a branch-and-bound approach. We compare different approaches based on nonlinear optimization numerically on a set of test instances.







Similar content being viewed by others
References
Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)
Babonneau, F., Nesterov, Y., Vial, J.-P.: Design and operations of gas transmission networks. Oper. Res. 60(1), 34–47 (2012)
Collins, M., Cooper, L., Helgason, R., Kennington, J., LeBlanc, L.: Solving the pipe network analysis problem using optimization techniques. Manag. Sci. 24(7), 747–760 (1978)
Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. SIAM, Philadelphia (2000)
CPLEX: User’s Manual for CPLEX. IBM Corporation, 12.1 edition, Armonk, USA (2011)
De Wolf, D.: Mathematical properties of formulations of the gas transmission problem. Submitted to RAIRO Oper. Res. (2004). http://www-heb.univ-littoral.fr/dewolf
De Wolf, D., Bakhouya, B.: The gas transmission problem when the merchant and the transport functions are disconnected. Technical Report 01/01, Ieseg, Université catholique de Lille, HEC Ecole de Gestion de l’ULG (2007)
De Wolf, D., Bakhouya, B.: Optimal dimensioning of pipe networks: the new situation when the distribution and the transportation functions are disconnected. Technical Report 07/02, Ieseg, Université catholique de Lille, HEC Ecole de Gestion de l’ULG (2008)
De Wolf, D., Bakhouya, B.: Solving gas transmission problems by taking compressors into account. http://www-heb.univ-littoral.fr/dewolf, September 2008. Submitted to 4OR
De Wolf, D., Smeers, Y.: Optimal dimensioning of pipe networks with application to gas transmission networks. Oper. Res. 44(4), 596–608 (1996)
De Wolf, D., Smeers, Y.: The gas transmission problem solved by an extension of the simplex algorithm. Manag. Sci. 46(11), 1454–1465 (2000)
Dembo, R.S., Mulvey, J.M., Zenios, S.A.: Large-scale nonlinear network models and their application. Oper. Res. 37(3), 353–372 (1989)
Fügenschuh, A., Homfeld, H., Schülldorf, H., Vigerske, S.: Mixed-integer nonlinear problems in transportation applications. In: Rodrigues, H., et al. (eds.) Proceedings of the 2nd International Conference on Engineering Optimization (CD-ROM) (2010)
Geißler, B., Martin, A., Morsi, A.: LaMaTTO++. Information available at http://www.mso.math.fau.de/edom/projects/lamatto.html, February 2015
Humpola, J., Fügenschuh, A., Koch, T.: A New Class of Valid Inequalities for Nonlinear Network Design Problems. OR Spectrum, online available (2015)
Humpola, J., Fügenschuh, A., Lehmann, T.: A primal heuristic for optimizing the topology of gas networks based on dual information. EURO J. Comput. Optim. 3(1), 53–78 (2015)
Karush, W.: Minima of functions of several variables with inequalities as side constraints. Master’s thesis (1939)
Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Springer, Berlin (2007)
Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the 2nd Berkley Symposium on Mathematical Statistics and Probability, pp. 481–493. University Press, Berkley, California (1951)
Maugis, J.J.: Etude de réseaux de transport et de distribution de fluide. RAIRO Oper. Res. 11(2), 243–248 (1977)
Nemhauser, G.L., Wolsey, L.A.: Integer programming, Chap. 6. In: Nemhauser, G.L., Rinnooy Kan, A.H.G., Todd, M.J. (eds.) Optimization, pp. 447–527. Elsevier, Amsterdam (1989)
Oldham, J.: Combinatorial approximation algorithms for generalized flow problems. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms SODA’99, pp. 704–714 (1999)
Pfetsch, M., Fügenschuh, A., Geißler, B., Geißler, N., Gollmer, R., Hiller, B., Humpola, J., Koch, T., Lehmann, T., Martin, A., Morsi, A., Rövekamp, J., Schewe, L., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M., Vigerske, S., Willert, B.: Validation of nominations in gas network optimization: models, methods, and solutions. Optim. Methods Softw. 30(1), 15–53 (2015)
Raghunathan, A.U.: Global optimization of nonlinear network design. SIAM J. Optim. 23(1), 268–295 (2013)
Sherali, H.D., Smith, E.P.: An optimal replacement-design model for a reliable water distribution network system. In: Coulbeck, Bryan (ed.) Integrated Computer Applications in Water Supply, vol. 1, pp. 61–75. Wiley, New York (1994)
Smith, E.M.B., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimization of nonconvex MINLPs. Comput. Chem. Eng. 23, 457–478 (1999)
Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99(3), 563–591 (2004)
Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)
Vigerske, S.: Decomposition in Multistage Stochastic Programming and a Constraint Integer Programming Approach to Mixed-Integer Nonlinear Programming. PhD thesis, Humboldt-Universität zu Berlin (2012)
Wächter, A., Biegler, L.T.: On the implementation of a primal–dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)
Acknowledgments
We are grateful to Open Grid Europe GmbH (OGE, Essen/Germany) for supporting our work. The second coauthor conducted parts of this research under a Konrad-Zuse-Fellowship. We thank two anonymous referees for their various helpful comments on our manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Humpola, J., Fügenschuh, A. Convex reformulations for solving a nonlinear network design problem. Comput Optim Appl 62, 717–759 (2015). https://doi.org/10.1007/s10589-015-9756-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-015-9756-2