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Abstract4

We consider the problem of partitioning the node set of a graph into k sets of given sizes5

in order to minimize the cut obtained using (removing) the k-th set. If the resulting cut has6

value 0, then we have obtained a vertex separator. This problem is closely related to the graph7

partitioning problem. In fact, the model we use is the same as that for the graph partitioning8

problem except for a different quadratic objective function. We look at known and new bounds9

obtained from various relaxations for this NP-hard problem. This includes: the standard eigen-10

value bound, projected eigenvalue bounds using both the adjacency matrix and the Laplacian,11

quadratic programming (QP) bounds based on recent successful QP bounds for the quadratic12

assignment problems, and semidefinite programming bounds. We include numerical tests for13

large and huge problems that illustrate the efficiency of the bounds in terms of strength and14

time.15
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1 Introduction47

We consider a special type of minimum cut problem, MC . The problem consists in partitioning the48

node set of a graph into k sets of given sizes in order to minimize the cut obtained by removing49

the k-th set. This is achieved by minimizing the number of edges connecting distinct sets after50

removing the k-th set, as described in [20]. This problem arises when finding a re-ordering to51

bring the sparsity pattern of a large sparse positive definite matrix into a block-arrow shape so as52

to minimize fill-in in its Cholesky factorization. The problem also arises as a subproblem of the53

vertex separator problem, VS . In more detail, a vertex separator is a set of vertices whose removal54

from the graph results in a disconnected graph with k − 1 components. A typical VS problem has55

k = 3 on a graph with n nodes, and it seeks a vertex separator which is optimal subject to some56

constraints on the partition size. This problem can be solved by solving an MC for each possible57

partition size. Since there are at most
(
n−1
2

)
3-tuple integers that sum up to n, and it is known58

that VS is NP-hard in general [16,20], we see that MC is also NP-hard when k ≥ 3.59

Our MC problem is closely related to the graph partitioning problem, GP , which is also NP-hard;60

see the discussions in [16]. In both problems one can use a model with a quadratic objective function61

over the set of partition matrices. The model we use is the same as that for GP except that the62

quadratic objective function is different. We study both existing and new bounds and provide both63

theoretical properties and empirical results. Specifically, we adapt and improve known techniques64

for deriving lower bounds for GP to derive bounds for MC. We consider eigenvalue bounds, a65

convex quadratic programming, QP, lower bound, as well as lower bounds based on semidefinite66

programming, SDP, relaxations.67

We follow the approaches in [12,20,22] for the eigenvalue bounds. In particular, we replace the68

standard quadratic objective function for GP, e.g., [12,22] with that used in [20] for MC. It is shown69

in [20] that one can equally use either the adjacency matrix A or the negative Laplacian (−L) in70

the objective function of the model. We show in fact that one can use A − Diag(d), ∀d ∈ Rn, in71

the model, where Diag(d) denotes the diagonal matrix with diagonal d. However, we emphasize72

and show that this is no longer true for the eigenvalue bounds and that using d = 0 is, empirically,73

stronger. Dependence of the eigenvalue lower bound on diagonal perturbations was also observed74

for the quadratic assignment problem, QAP, and GP, see e.g., [10, 21]. In addition, we find a new75

projected eigenvalue lower bound using A that has three terms that can be found explicitly and76

efficiently. We illustrate this empirically on large and huge scale sparse problems.77

Next, we extend the approach in [1, 2, 5] from the QAP to MC. This allows for a QP bound78

that is based on SDP duality and that can be solved efficiently. The discussion and derivation of79

this lower bound is new even in the context of GP. Finally, we follow and extend the approach80

in [28] and derive and test SDP relaxations. In particular, we answer a question posed in [28] about81

redundant constraints. This new result simplifies the SDP relaxations even in the context of GP.82

1.1 Outline83

We continue in Section 2 with preliminary descriptions and results on our special MC. This follows84

the approach in [20]. In Section 3 we outline the basic eigenvalue bounds and then the projected85

eigenvalue bounds following the approach in [12, 22]. Theorem 3.7 includes the projected bounds86

along with our new three part eigenvalue bound. The three part bound can be calculated explicitly87

and efficiently by finding k − 1 eigenvalues and two minimal scalar products. The QP bound is88

described in Section 4. The SDP bounds are presented in Section 5.89
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Upper bounds using feasible solutions are given in Section 6. Our numerical tests are in Section90

7. Our concluding remarks are in Section 8.91

2 Preliminaries92

We are given an undirected graph G = (N,E) with a nonempty node set N = {1, . . . , n}93

and a nonempty edge set E. In addition, we have a positive integer vector of set sizes m =94

(m1, . . . ,mk)
T ∈ Zk+, k > 2, such that the sum of the components mT e = n. Here e is the vector of95

ones of appropriate size. Further, we let Diag(v) denote the diagonal matrix formed using the vec-96

tor v; the adjoint diag(Y ) = Diag∗(Y ) is the vector formed from the diagonal of the square matrix97

Y . We let ext(K) represent the extreme points of a convex set K. We let x = vec(X) ∈ Rnk denote98

the vector formed (columnwise) from the matrix X; the adjoint and inverse is Mat(x) ∈ Rn×k. We99

also let A⊗B denote the Kronecker product; and A ◦B denote the Hadamard product.100

We let

Pm :=
{
S = (S1, . . . , Sk) : Si ⊂ N, |Si| = mi, ∀i, Si ∩ Sj = ∅,∀i ̸= j, ∪ki=1Si = N

}
denote the set of all partitions of N with the appropriate sizes specified by m. The partitioning is
encoded using an n × k partition matrix X ∈ Rn×k where the column X:j is the incidence vector
for the set Sj

Xij =

{
1 if i ∈ Sj
0 otherwise.

Therefore, the set cardinality constraints are given by XT e = m; while the constraints that each101

vertex appears in exactly one set is given by Xe = e.102

The set of partition matrices is denoted by Mm. It can be represented using various linear103

and quadratic constraints. We present several in the following. In particular, we phrase the linear104

equality constraints as quadratics for use in the Lagrangian relaxation below in Section 5.105

Definition 2.1. We denote the set of zero-one, nonnegative, linear equalities, doubly stochastic
type, m-diagonal orthogonality type, e-diagonal orthogonality type, and gangster constraints as,
respectively,

Z := {X ∈ Rn×k : Xij ∈ {0, 1}, ∀ij} = {X ∈ Rn×k : (Xij)
2 = Xij , ∀ij}

N := {X ∈ Rn×k : Xij ≥ 0, ∀ij}
E := {X ∈ Rn×k : Xe = e,XT e = m} = {X ∈ Rn×k : ∥Xe− e∥2 + ∥XT e−m∥2 = 0}
D := {X ∈ Rn×k : X ∈ E ∩ N}
DO := {X ∈ Rn×k : XTX = Diag(m)}
De := {X ∈ Rn×k : diag(XXT ) = e}
G := {X ∈ Rn×k : X:i ◦X:j = 0, ∀i ̸= j}

There are many equivalent ways of representing the set of all partition matrices. Following are106

a few.107

4



Proposition 2.2. The set of partition matrices in Rn×k can be expressed as the following.

Mm = E ∩ Z
= ext(D)
= E ∩ DO ∩N
= E ∩ DO ∩ De ∩N
= E ∩ Z ∩ DO ∩ G ∩ N .

(2.1)

Proof. The first equality follows immediately from the definitions. The second equality follows from108

the transportation type constraints and is a simple consequence of Birkhoff and Von Neumann theo-109

rems that the extreme points of the set of doubly stochastic matrices are the permutation matrices,110

see e.g., [23]. The third equality is shown in [20, Prop. 1]. The fourth and fifth equivalences contain111

redundant sets of constraints.112

We let δ(Si, Sj) denote the set of edges between the sets of nodes Si, Sj , and we denote the set
of edges with endpoints in distinct partition sets S1, . . . , Sk−1 by

δ(S) = ∪i<j<kδ(Si, Sj). (2.2)

The minimum of the cardinality |δ(S)| is denoted

cut(m) = min{|δ(S)| : S ∈ Pm}. (2.3)

The graph G has a vertex separator if there exists an S ∈ Pm such that the removal of set Sk113

and its associated edges means that the induced subgraph has no edges across Si and Sj for any114

1 ≤ i < j ≤ k − 1. This is equivalent to δ(S) = ∅, i.e., cut(m) = 0. Otherwise, cut(m) > 0.1115

We define the k × k matrix

B :=

[
eeT − Ik−1 0

0 0

]
∈ Sk,

where Sk denotes the vector space of k × k symmetric matrices equipped with the trace inner-116

product, ⟨S, T ⟩ = traceST . We let A denote the adjacency matrix of the graph and let L :=117

Diag(Ae)−A be the Laplacian.118

In [20, Prop. 2], it was shown that |δ(S)| can be represented in terms of a quadratic function of119

the partition matrix X, i.e., as 1
2 trace(−L)XBX

T and 1
2 traceAXBX

T , where we note that the120

two matrices A and −L differ only on the diagonal. From their proof, it is not hard to see that121

their result can be slightly extended as follows.122

Proposition 2.3. Let S ∈ Pm be a partition and let X ∈ Mm be the associated partition matrix.
Then

|δ(S)| = 1

2
trace (A−Diag(d))XBXT , ∀d ∈ Rn. (2.4)

In particular, setting d = 0, Ae, respectively yields A,−L.123

1A discussion of the relationship of cut(m) with the bandwidth of the graph is given in e.g., [8,18,20]. Particularly,
for k = 3, if cut(m) > 0, then m3 + 1 is a lower bound for the bandwidth.

5



Proof. The result for the choices of d = 0, Ae, equivalently A,−L, respectively, was proved in [20,
Prop. 2]. Moreover, as noted in the proof of [20, Prop. 2], diag(XBXT ) = 0. Consequently,

1

2
traceAXBXT =

1

2
trace (A−Diag(d))XBXT , ∀d ∈ Rn.

124

In this paper we focus on the following problem given by (2.3) and (2.4):

cut(m) = min 1
2 trace(A−Diag(d))XBXT

s.t. X ∈Mm;
(2.5)

here d ∈ Rn. For simplicity we write G = G(d) = A − Diag(d) for d ∈ Rn, and simply use G125

when no confusion arises. We recall that if cut(m) = 0, then we have obtained a vertex separator,126

i.e., removing the k-th set results in a graph where the first k − 1 sets are disconnected. On the127

other hand, if we find a positive lower bound cut(m) ≥ α > 0, then no vertex separator can exist128

for this m. This observation can be employed in solving some classical vertex separator problems129

that look for an optimal vertex separator in the case that k = 3 with constraints on (m1,m2,m3).130

Specifically, since there are at most
(
n−1
2

)
3-tuple integers summing up to n, one only needs to131

consider at most
(
n−1
2

)
different MC problems in order to find the optimal vertex separator.132

Though any choice of d ∈ Rn is equivalent for (2.5) on the feasible setMm, as we see repeatedly133

throughout the paper, this does not mean that they are equivalent on the relaxations that we134

consider. For similar observations concerning diagonal perturbation for the QAP, the GP and their135

relaxations, see e.g., [10, 21]. Finally, note that the feasible set of (2.5) is the same as that of the136

GP; see e.g., [22,28] for the projected eigenvalue bound and for the SDP bound, respectively. Thus,137

the techniques for deriving bounds for MC can be adapted to obtain new results concerning lower138

bounds for GP.139

3 Eigenvalue Based Lower Bounds140

We now present bounds on cut(m) based on X ∈ DO, the m-diagonal orthogonality type constraint

XTX = Diag(m). For notational simplicity we define M := Diag(m), m̃ :=
(√
m1, . . . ,

√
mk

)T
and

M̃ := Diag(m̃). For a real symmetric matrix C ∈ St, we let

λ1(C) ≥ λ2(C) ≥ · · · ≥ λt(C)

denote the eigenvalues of C in nonincreasing order, and set λ(C) = (λi(C)) ∈ Rt.141

3.1 Basic Eigenvalue Lower Bound142

The Hoffman-Wielandt bound [14] can be applied to get a simple eigenvalue bound. In this ap-
proach, we solve the relaxed problem

cut(m) ≥ min 1
2 traceGXBX

T

s.t. X ∈ DO,
(3.1)

where we recall that G = G(d) = A−Diag(d), d ∈ Rn. We first introduce the following definition.143
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Definition 3.1. For two vectors x, y ∈ Rn, the minimal scalar product is defined by

⟨x, y⟩− := min

{
n∑
i=1

xϕ(i)yi : ϕ is a permutation on N

}
.

In the case when y is sorted in an increasing order, i.e., y1 ≤ y2 ≤ · · · ≤ yn, from the renowned144

rearrangement inequality, the permutation that attains the minimum above is the one that sorts x145

in a decreasing order. This fact is used repeatedly in this paper.146

We also need the following two auxiliary results.147

Theorem 3.2 (Hoffman and Wielandt [14]). Let C and D be symmetric matrices of orders n and
k, respectively, with k ≤ n. Then

min
{
traceCXDXT : XTX = Ik

}
=

⟨
λ(C),

(
λ(D)
0

)⟩
−
. (3.2)

The minimum on the left is attained for X =
[
pϕ(1) . . . pϕ(k)

]
QT , where pϕ(i) is a normalized148

eigenvector to λϕ(i)(C), the columns of Q =
[
q1 . . . qk

]
consist of the normalized eigenvectors149

qi of λi(D), and ϕ is the permutation of {1, . . . , n} attaining the minimum in the minimal scalar150

product.151

Lemma 3.3 ([20, Lemma 4]). The k-ordered eigenvalues of the matrix B̃ := M̃BM̃ satisfy

λ1(B̃) > 0 = λ2(B̃) > λ3(B̃) ≥ . . . ≥ λk−1(B̃) ≥ λk(B̃).

We now present the basic eigenvalue lower bound, which turns out to always be negative.152

Theorem 3.4. Let d ∈ Rn, G = A−Diag(d). Then

cut(m) ≥ 0 > p∗eig(G) :=
1

2

⟨
λ(G),

(
λ(B̃)
0

)⟩
−
=

1

2

(
k−2∑
i=1

λk−i+1(B̃)λi(G) + λ1(B̃)λn(G)

)
.

Moreover, the function p∗eig(G(d)) is concave as a function of d ∈ Rn.153

Proof. We use the substitution X = ZM̃ , i.e., Z = XM̃−1, in (3.1). Then the constraint on X
implies that ZTZ = I. We now solve the equivalent problem to (3.1):

min 1
2 traceGZ(M̃BM̃)ZT

s.t. ZTZ = I.
(3.3)

The optimal value is obtained using the minimal scalar product of eigenvalues as done in the154

Hoffman-Wielandt result, Theorem 3.2. From this we conclude immediately that cut(m) ≥ p∗eig(G).155

Furthermore, the explicit formula for the minimal scalar product follows immediately from Lem-156

ma 3.3.157

We now show that p∗eig(G) < 0. Note that trace M̃BM̃ = traceMB = 0. Thus the sum of the

eigenvalues of B̃ = M̃BM̃ is 0. Let ϕ̂ be a permutation of {1, . . . , n} that attains the minimum
value min

ϕ permutation

∑k
i=1 λϕ(i)(G)λi(B̃). Then for any permutation ψ, we have

k∑
i=1

λψ(i)(G)λi(B̃) ≥
k∑
i=1

λ
ϕ̂(i)

(G)λi(B̃). (3.4)
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Now if T is the set of all permutations of {1, 2, . . . , n}, then we have

∑
ψ∈T

(
k∑
i=1

λψ(i)(G)λi(B̃)

)
=

k∑
i=1

∑
ψ∈T

λψ(i)(G)

λi(B̃) =

∑
ψ∈T

λψ(1)(G)

( k∑
i=1

λi(B̃)

)
= 0,

(3.5)
since

∑
ψ∈T λψ(i)(G) is independent of i. This means that there exists at least one permutation158

ψ so that
∑k

i=1 λψ(i)(G)λi(B̃) ≤ 0, which implies that the minimal scalar product must satisfy159 ∑k
i=1 λϕ̂(i)(G)λi(B̃) ≤ 0. Moreover, in view of (3.4) and (3.5), this minimal scalar product is zero160

if, and only if,
∑k

i=1 λψ(i)(G)λi(B̃) = 0, for all ψ ∈ T . Recall from Lemma 3.3 that λ1(B̃) > λk(B̃).161

Moreover, if all eigenvalues of G were equal, then necessarily G = βI for some β ∈ R and A must be162

diagonal. This implies that A = 0, a contradiction. This contradiction shows that G(d) must have163

at least two distinct eigenvalues, regardless of the choice of d. Therefore, we can change the order164

and change the value of the scalar product on the left in (3.4). Thus p∗eig(G) is strictly negative.165

Finally, the concavity follows by observing from (3.3) that

p∗eig(G(d)) = min
ZTZ=I

1

2
traceG(d)Z(M̃BM̃)ZT ,

is a function obtained as a minimum of a set of functions affine in d, and recalling that the minimum166

of affine functions is concave.167

Remark 3.5. We emphasize here that the eigenvalue bounds depend on the choice of d ∈ Rn.
Though the d is irrelevant in Proposition 2.3, i.e., the function is equivalent on the feasible set of
partition matricesMm, the values are no longer equal on the relaxed set DO. Of course the values
are negative and not useful as a bound. We can fix d = Ae ∈ Rn and consider the bounds

cut(m) ≥ 0 > p∗eig(A− γDiag(d)) =
1

2

⟨
λ(A− γDiag(d)),

(
λ(B̃)
0

)⟩
−
, γ ≥ 0.

From our empirical tests on random problems, we observed that the maximum occurs for γ closer168

to 0 than 1, thus illustrating why the bound using G = A is better than the one using G = −L.169

This motivates our use of G = A in the simulations below for the improved bounds.170

3.2 Projected Eigenvalue Lower Bounds171

Projected eigenvalue bounds for the QAP, and for GP are presented and studied in [10,12,22]. They
have proven to be surprisingly stronger than the basic eigenvalue bounds. (Seen to be < 0 above.)
These are based on a special parametrization of the affine span of the linear equality constraints,
E . Rather than solving for the basic eigenvalue bound using the program in (3.1), we include the
linear equality constraints E , i.e., we consider the problem

min 1
2 traceGXBX

T

s.t. X ∈ DO ∩ E ,
(3.6)

where G = A−Diag(d), d ∈ Rn.172

We define the n× n and k × k orthogonal matrices P,Q with

P =
[

1√
n
e V

]
∈ On, Q =

[
1√
n
m̃ W

]
∈ Ok. (3.7)

8



Lemma 3.6 ([22, Lemma 3.1]). Let P,Q, V,W be defined in (3.7). Suppose that X ∈ Rn×k and
Z ∈ R(n−1)×(k−1) are related by

X = P

[
1 0
0 Z

]
QT M̃. (3.8)

Then the following holds:173

1. X ∈ E.174

2. X ∈ N ⇔ V ZW T ≥ − 1
nem̃

T .175

3. X ∈ DO ⇔ ZTZ = Ik−1.176

Conversely, if X ∈ E, then there exists Z such that the representation (3.8) holds.177

Let Q : R(n−1)×(k−1) → Rn×k be the linear transformation defined by Q(Z) = V ZW T M̃
and define X̂ = 1

nem
T ∈ Rn×k. Then X̂ ∈ E , and Lemma 3.6 states that Q is an invertible

transformation between R(n−1)×(k−1) and E − X̂. Indeed, from (3.8), we see that X ∈ E if, and
only if,

X = P

[
1 0
0 Z

]
QT M̃

=
[
e√
n

V
] [1 0

0 Z

] [ 1√
n
m̃T

W T

]
M̃

= 1
nem

T + V ZW T M̃

= X̂ + V ZW T M̃ = X̂ +Q(Z),

(3.9)

for some Z. Thus, the set E can be parametrized using X̂ + V ZW T M̃ .178

We are now ready to describe our two projected eigenvalue bounds. We remark that our bounds179

in (3.11) and in the first inequality in (3.14) were already discussed in [20, Prop. 3, Thm. 1, Thm.180

3]. We include them for completeness. We note that the notation in Lemma 3.6, equation (3.9) and181

the next theorem will also be used frequently in Section 4 when we discuss the QP lower bound.182

Theorem 3.7. Let d ∈ Rn, G = A−Diag(d). Let V , W be defined in (3.7) and X̂ = 1
nem

T ∈ Rn×k.183

Then:184

1. For any X ∈ E and Z ∈ R(n−1)×(k−1) related by (3.9), we have

traceGXBXT = α+ trace ĜZB̂ZT + traceCZT

= −α+ trace ĜZB̂ZT + 2 traceGX̂BXT ,
(3.10)

and

trace(−L)XBXT = trace L̂ZB̂ZT , (3.11)

where

Ĝ = V TGV, L̂ = V T (−L)V, B̂ =W T M̃BM̃W, α =
1

n2
(eTGe)(mTBm), C = 2V TGX̂BM̃W.

(3.12)

2. We have the following two lower bounds:185

9



(a)

cut(m) ≥ p∗projeig(G) :=
1

2

{
−α+

⟨
λ(Ĝ),

(
λ(B̂)
0

)⟩
−
+ 2 min

X∈D
traceGX̂BXT

}

=
1

2

{
α+

⟨
λ(Ĝ),

(
λ(B̂)
0

)⟩
−
+ min

0≤X̂+V ZWT M̃
traceCZT

}

=
1

2

{
−α+

k−2∑
i=1

λk−i(B̂)λi(Ĝ) + λ1(B̂)λn−1(Ĝ) + 2 min
X∈D

traceGX̂BXT

}
.

(3.13)

(b)

cut(m) ≥ p∗projeig(−L) :=
1

2

⟨
λ(L̂),

(
λ(B̂)
0

)⟩
−
≥ p∗eig(−L).

(3.14)

Proof. After substituting the parametrization (3.9) into the function traceGXBXT , we obtain a
constant, quadratic, and linear term:

traceGXBXT = traceG(X̂ + V ZW T M̃)B(X̂ + V ZW T M̃)T

= traceGX̂BX̂T + trace(V TGV )Z(W T M̃BM̃W )ZT + trace 2V TGX̂BM̃WZT

and

traceGXBXT = traceGX̂BX̂T + trace(V TGV )Z(W T M̃BM̃W )ZT + 2 traceGX̂B(V ZW T M̃)T

= traceGX̂BX̂T + trace(V TGV )Z(W T M̃BM̃W )ZT + 2 traceGX̂B(X − X̂)T

= trace(−G)X̂BX̂T + trace(V TGV )Z(W T M̃BM̃W )ZT + 2 traceGX̂BXT .

These together with (3.12) yield the two equations in (3.10). Since Le = 0 and hence LX̂ = 0, we186

obtain (3.11) on replacing G with −L in the above relations. This proves Item 1.187

We now prove (3.13), i.e., Item 2a. To this end, recall from (2.5) and (2.1) that

cut(m) = min

{
1

2
traceGXBXT : X ∈ D ∩ DO

}
.

Combining this with (3.10), we see further that

cut(m) =
1

2

(
−α+ min

X∈D∩DO

{
trace ĜZB̂ZT + 2 traceGX̂BXT

})
≥ 1

2

(
−α+ min

X∈E∩DO

trace ĜZB̂ZT + 2 min
X∈D

traceGX̂BXT

)
=

1

2

(
−α+

⟨
λ(Ĝ),

(
λ(B̂)
0

)⟩
−
+ 2 min

X∈D
traceGX̂BXT

)
= p∗projeig(G),

(3.15)

where Z and X are related via (3.9), and the last equality follows from Lemma 3.6 and Theorem 3.2.
Furthermore, notice that

− α+ 2 min
X∈D

traceGX̂BXT = α+ 2 min
X∈D

traceGX̂B(X − X̂)T

= α+ 2 min
0≤X̂+V ZWT M̃

traceGX̂B(V ZW T M̃)T = α+ min
0≤X̂+V ZWT M̃

traceCZT ,
(3.16)
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where the second equality follows from Lemma 3.6, and the last equality follows from the definition
of C in (3.12). Combining this last relation with (3.15) proves the first two equalities in (3.13).
The last equality in (3.13) follows from the fact that

λk(B̃) ≤ λk−1(B̂) ≤ λk−1(B̃) ≤ · · · ≤ λ2(B̃) = 0 ≤ λ1(B̂) ≤ λ1(B̃), (3.17)

which is a consequence of the eigenvalue interlacing theorem [15, Corollary 4.3.16], the definition188

of B̂ and Lemma 3.3.189

Next, we prove (3.14). Recall again from (2.5) and (2.1) that

cut(m) = min

{
1

2
trace(−L)XBXT : X ∈ D ∩ DO

}
.

Using (3.11), we see further that

cut(m) ≥ 1

2
min

{
trace(−L)XBXT : X ∈ E ∩ DO

}
=

1

2
min

{
trace L̂ZB̂ZT : X ∈ E ∩ DO

}
=

1

2

⟨
λ(L̂),

(
λ(B̂)
0

)⟩
−
(= p∗projeig(−L))

≥ min

{
1

2
trace(−L)XBXT : X ∈ DO

}
,

where Z and X are related via (3.9). The last inequality follows since the constraint X ∈ E is190

dropped.191

Remark 3.8. Let Q ∈ R(k−1)×(k−1) be the orthogonal matrix with columns consisting of the eigen-
vectors of B̂, defined in (3.12), corresponding to eigenvalues of B̂ in nondecreasing order; let
PG, PL ∈ R(n−1)×(k−1) be the matrices with orthonormal columns consisting of k − 1 eigenvec-
tors of Ĝ, L̂, respectively, corresponding to the largest k − 2 in nonincreasing order followed by the
smallest. From (3.17) and Theorem 3.2, the minimal scalar product terms in (3.13) and (3.14),
respectively, are attained at

ZG = PGQ
T , ZL = PLQ

T , (3.18)

respectively, and two corresponding points in E are given, according to (3.9), respectively, by

XG = X̂ + V ZGW
T M̃, XL = X̂ + V ZLW

T M̃. (3.19)

The linear programming problem, LP , in (3.13) can be solved explicitly; see Lemma 3.10 below.192

Since the condition number for the symmetric eigenvalue problem is 1, e.g., [9], the above shows193

that we can find the projected eigenvalue bounds very accurately. In addition, we need only find194

k − 1 eigenvalues of Ĝ, B̂. Hence, if the number of sets k is small relative to the number of nodes195

n and the adjacency matrix A is sparse, then we can find bounds for large problems both efficiently196

and accurately; see Section 7.2.197

Remark 3.9. We emphasize again that although the objective function in (2.5) is equivalent for198

all d ∈ Rn on the set of partition matrices Mm, this is not true once we relax this feasible set.199

Though there are advantages to using the Laplacian matrix as shown in [20] in terms of simplicity200
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of the objective function, our numerics suggest that the bound p∗projeig(A) obtained from using the201

adjacency matrix A is stronger than p∗projeig(−L). Numerical tests confirming this are given in202

Section 7.203

The constant term α and eigenvalue minimal scalar product term of the bound p∗projeig(G) in204

(3.13) can be found efficiently using the two quadratic forms for Ĝ, B̂ and finding k−1 eigenvalues205

from them. Before ending this section, we give an explicit solution to the linear optimization206

problem in (3.13) in Lemma 3.10, below, which constitutes the third term of the bound p∗projeig(G).207

Notice that in (3.13), the minimization is taken over X ∈ D, which is shown to be the convex208

hull of the set of partition matrices Mm. As mentioned above, this essentially follows from the209

Birkhoff and Von Neumann theorems, see e.g., [23]. Thus, to solve the linear programming problem210

in (3.13), it suffices to consider minimizing the same objective over the nonconvex setMm instead.211

This minimization problem has a closed form solution, as shown in the next Lemma. The simple212

proof follows by noting that every partition matrix can be obtained by permuting the rows of a213

specific partition matrix.214

Lemma 3.10. Let d ∈ Rn, G = A−Diag(d), X̂ = 1
nem

T ∈Mm and

v0 =


(n−mk −m1)em1

(n−mk −m2)em2

...
(n−mk −mk−1)emk−1

0emk

 ,

where ej ∈ Rj is the vector of ones of dimension j. Then

min
X∈Mm

traceGX̂BXT =
1

n
⟨Ge, v0⟩−.

4 Quadratic Programming Lower Bound215

A new successful and efficient bound used for the QAP is given in [1, 5]. In this section, we adapt216

the idea described there to obtain a lower bound for cut(m). This bound uses a relaxation that is a217

convex QP, i.e., the minimization of a quadratic function that is convex on the feasible set defined218

by linear inequality constraints. Approaches based on nonconvex QPs are given in e.g., [13] and219

the references therein.220

The main idea in [1, 5] is to use the zero duality gap result for a homogeneous QAP [2, Theo-
rem 3.2] on an objective obtained via a suitable reparametrization of the original problem. Following
this idea, we consider the parametrization in (3.10) where our main objective in (2.5) is rewritten
as:

1

2
traceGXBXT =

1

2

(
α+ trace ĜZB̂ZT + traceCZT

)
(4.1)

with X and Z related according to (3.8), and G = A−Diag(d) for some d ∈ Rn. We next look at
the homogeneous part:

v∗r := min 1
2 trace ĜZB̂Z

T

s.t. ZTZ = I.
(4.2)

12



Notice that the constraint ZZT ≼ I is redundant for the above problem. By adding this redundant
constraint, the corresponding Lagrange dual problem is given by

vdsdp := max 1
2 traceS + 1

2 traceT

s.t. Ik−1 ⊗ S + T ⊗ In−1 ≼ B̂ ⊗ Ĝ,
S ≼ 0,
S ∈ Sn−1, T ∈ Sk−1,

(4.3)

where the variables S and T are the dual variables corresponding to the constraints ZZT ≼ I and
ZTZ = I, respectively. It is known that v∗r = vdsdp; see [19, Theorem 2]. This latter problem (4.3)
can be solved efficiently. For example, as in the proofs of [2, Theorem 3.2] and [19, Theorem 2],
one can take advantage of the properties of the Kronecker product and orthogonal diagonalizations
of B̂, Ĝ, to reduce the problem to solving the following LPwith n+ k − 2 variables,

max 1
2e
T s+ 1

2e
T t

s.t. ti + sj ≤ λiσj , i = 1, . . . , k − 1, j = 1, . . . , n− 1,
sj ≤ 0, j = 1, . . . , n− 1,

(4.4)

where
B̂ = U1Diag(λ)UT1 and Ĝ = U2Diag(σ)UT2 (4.5)

are eigenvalue orthogonal decompositions of B̂ and Ĝ, respectively. From an optimal solution
(s∗, t∗) of (4.4), we can recover an optimal solution of (4.3) as

S∗ = U2Diag(s∗)UT2 T ∗ = U1Diag(t∗)UT1 . (4.6)

Next, suppose that the optimal value of the dual problem (4.3) is attained at (S∗, T ∗). Let Z
be such that the X defined according to (3.8) is a partition matrix. Then we have

1

2
trace(ĜZB̂ZT ) =

1

2
vec(Z)T (B̂ ⊗ Ĝ) vec(Z)

=
1

2
vec(Z)T (B̂ ⊗ Ĝ− I ⊗ S∗ − T ∗ ⊗ I)︸ ︷︷ ︸

Q̂

vec(Z) +
1

2
trace(ZZTS∗) +

1

2
trace(T ∗)

=
1

2
vec(Z)T Q̂ vec(Z) +

1

2
trace([ZZT − I]S∗) +

1

2
trace(S∗) +

1

2
trace(T ∗)

≥ 1

2
vec(Z)T Q̂ vec(Z) +

1

2
trace(S∗) +

1

2
trace(T ∗),

where the last inequality uses S∗ ≼ 0 and ZZT ≼ I.221

Recall that the original nonconvex problem (2.5) is equivalent to minimizing the right hand side
of (4.1) over the set of all Z so that the X defined in (3.8) corresponds to a partition matrix. From
the above relations, the third equality in (2.1) and Lemma 3.6, we see that

cut(m) ≥ min 1
2(α+ traceCZT + vec(Z)T Q̂ vec(Z)) + 1

2 trace(S
∗) + 1

2 trace(T
∗)

s.t. ZTZ = Ik−1, V ZW T M̃ ≥ −X̂.
(4.7)

We also recall from (4.3) that 1
2 trace(S

∗) + 1
2 trace(T

∗) = vdsdp = v∗r , which further equals

1

2

⟨
λ(Ĝ),

(
λ(B̂)
0

)⟩
−
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according to (4.2) and Theorem 3.2.222

A lower bound can now be obtained by relaxing the constraints in (4.7). For example, by
dropping the orthogonality constraints, we obtain the following lower bound on cut(m):

p∗QP (G) := min q1(Z) :=
1
2

(
α+ traceCZT + vec(Z)T Q̂ vec(Z) +

⟨
λ(Ĝ),

(
λ(B̂)
0

)⟩
−

)
s.t. V ZW T M̃ ≥ −X̂,

(4.8)

Notice that this is a QP with (n− 1)(k − 1) variables and nk constraints.223

As in [1, Page 346], we now reformulate (4.8) into a QP in variables X ∈ D, see (4.9). Note that224

the corresponding Hessian Q̃ defined in (4.10) is not positive semidefinite in general. Nevertheless,225

the QP is a convex problem.226

Theorem 4.1. Let S∗, T ∗ be optimal solutions of (4.3) as defined in (4.6). A lower bound on
cut(m) is obtained from the following QP:

cut(m) ≥ p∗QP (G) = min
X∈D

1

2
vec(X)T Q̃ vec(X) +

1

2

⟨
λ(Ĝ),

(
λ(B̂)
0

)⟩
−

(4.9)

where
Q̃ := B ⊗G−M−1 ⊗ V S∗V T − M̃−1WT ∗W T M̃−1 ⊗ In. (4.10)

The QP in (4.9) is a convex problem since Q̃ is positive semidefinite on the tangent space of E.227

Proof. We start by rewriting the second-order term of q1 in (4.8) using the relation (3.8). Since
V TV = In−1 and W TW = Ik−1, we have from the definitions of B̂ and Ĝ that

Q̂ = B̂ ⊗ Ĝ− Ik−1 ⊗ S∗ − T ∗ ⊗ In−1

=W T M̃BM̃W ⊗ V TGV − Ik−1 ⊗ S∗ − T ∗ ⊗ In−1

= (M̃W ⊗ V )T [B ⊗G−M−1 ⊗ V S∗V T − M̃−1WT ∗W T M̃−1 ⊗ In](M̃W ⊗ V )

(4.11)

On the other hand, from (3.9), we have

vec(X − X̂) = vec(V ZW T M̃) = (M̃W ⊗ V ) vec(Z).

Hence, the second-order term in q1 can be rewritten as

vec(Z)T Q̂ vec(Z) = vec(X − X̂)T Q̃ vec(X − X̂), (4.12)

where Q̃ is defined in (4.10). Next, we see from V T e = 0 that

(M−1 ⊗ V S∗V T ) vec(X̂) =
1

n
(M−1 ⊗ V S∗V T )(m⊗ In)e =

1

n
(e⊗ V S∗V T )e = 0.

Similarly, since W T m̃ = 0, we also have

(M̃−1WT ∗W T M̃−1 ⊗ In) vec(X̂) =
1

n
(M̃−1WT ∗W T M̃−1 ⊗ In)(m⊗ In)e

=
1

n
(M̃−1WT ∗W T m̃⊗ In)e = 0.
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Combining the above two relations with (4.12), we obtain further that

vec(Z)T Q̂ vec(Z)

=vec(X)T Q̃ vec(X)− 2 vec(X̂)T [B ⊗G] vec(X) + vec(X̂)[B ⊗G] vec(X̂)

=vec(X)T Q̃ vec(X)− 2 traceGX̂BXT + α.

For the first two terms of q1, proceeding as in (3.16), we have

α+ traceCZT = −α+ 2 traceGX̂BXT .

Furthermore, recall from Lemma 3.6 that with X and Z related by (3.8), X ∈ D if, and only if,228

V ZW T M̃ ≥ −X̂.229

The conclusion in (4.9) now follows by substituting the above expressions into (4.8).230

Finally, from (4.11) we see that Q̃ is positive semidefinite when restricted to the range of231

M̃W ⊗ V . This is precisely the tangent space of E .232

Although the dimension of the feasible set in (4.9) is slightly larger than the dimension of the233

feasible set in (4.8), the former feasible set is much simpler. Moreover, as mentioned above, even234

though Q̃ is not positive semidefinite in general, it is when restricted to the tangent space of E .235

Thus, as in [5], one may apply the Frank-Wolfe algorithm on (4.9) to approximately compute the236

QP lower bound p∗QP (G) for problems with huge dimension.237

Since Q̂ ≽ 0, it is easy to see from (4.8) that p∗QP (G) ≥ p∗projeig(G). This inequality is not238

necessarily strict. Indeed, if G = −L, then C = 0 and α = 0 in (4.8). Since the feasible set of239

(4.8) contains the origin, it follows from this and the definition of p∗projeig(−L) that p∗QP (−L) =240

p∗projeig(−L). Despite this, as we see in the numerics Section 7, we have p∗QP (A) > p∗projeig(A) for241

most of our numerical experiments. In general, we still do not know what conditions will guarantee242

p∗QP (G) > p∗projeig(G).243

5 Semidefinite Programming Lower Bounds244

In this section, we study the SDP relaxation constructed from the various equality constraints in245

the representation in (2.1) and the objective function in (2.4).246

One way to derive an SDP relaxation for (2.5) is to start by considering a suitable Lagrangian
relaxation, which is itself an SDP. Taking the dual of this Lagrangian relaxation then gives an SDP
relaxation for (2.5); see [29] and [28] for the development for the QAP and GP cases, respectively.
Alternatively, we can also obtain the same SDP relaxation directly using the well-known lifting
process, e.g., [3,17,24,28,29]. In this approach, we start with the following equivalent quadratically
constrained quadratic problems to (2.5):

cut(m) = min 1
2 traceGXBX

T = min 1
2 traceGXBX

T

s.t. X ◦X = X, s.t. X ◦X = x0X,
∥Xe− e∥2 = 0, ∥Xe− x0e∥2 = 0,
∥XT e−m∥2 = 0, ∥XT e− x0m∥2 = 0,
X:i ◦X:j = 0, ∀i ̸= j, X:i ◦X:j = 0, ∀i ̸= j,
XTX −M = 0, XTX −M = 0,
diag(XXT )− e = 0. diag(XXT )− e = 0,

x20 = 1.

(5.1)
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Here: G = A − Diag(d), d ∈ Rn; the first equality follows from the fifth equality in (2.1), and
we add x0 and the constraint x20 = 1 to homogenize the problem. Note that if x0 = −1 at the
optimum, then we can replace it with x0 = 1 by changing the sign X ← −X while leaving the
objective value unchanged. We next linearize the quadratic terms in (5.1) using the matrix

YX :=

(
1

vec(X)

)
(1 vec(X)T ).

Then YX ≽ 0 and is rank one. The objective function becomes

1

2
traceGXBXT =

1

2
traceLGYX ,

where

LG :=

[
0 0
0 B ⊗G

]
. (5.2)

By removing the rank one restriction on YX and using a general symmetric matrix variable Y rather
than YX , we obtain the following SDP relaxation:

cut(m) ≥ p∗SDP (G) := min 1
2 traceLGY

s.t. arrow (Y ) = e0,
traceD1Y = 0,
traceD2Y = 0,
GJ(Y ) = 0,
DO(Y ) =M,
De(Y ) = e,
Y00 = 1,
Y ≽ 0,

(5.3)

where the rows and columns of Y ∈ Skn+1 are indexed from 0 to kn, and e0 is the first (0th) unit247

vector. The notation used for describing the constraints above is standard; see, for example, [28].248

For the convenience of the readers, we also describe them in detail in the appendix.249

From the details in the appendix, we have that both D1 and D2 are positive semidefinite.
From the constraints traceDiY = 0, i = 1, 2 we conclude that the feasible set of (5.3) has no
strictly feasible (positive definite) point Y ≻ 0. Numerical difficulties can arise when an interior-
point method is directly applied to a problem where strict feasibility, Slater’s condition, fails.
Nonetheless, as in [28], we can find a simple matrix in the relative interior of the feasible set and
use its structure to project (and regularize) the problem into a smaller dimension. This is achieved
by finding a matrix V with range equal to the intersection of the nullspaces of D1 and D2. This is
called facial reduction, [4, 7]. Let Vj ∈ Rj×(j−1), V T

j e = 0, e.g.,

Vj :=


1 0 . . . . . . 0
0 1 . . . . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . 1
−1 . . . . . . −1 −1


j×(j−1)

.

and let

V̂ :=

[
1 0

1
nm⊗ en Vk ⊗ Vn

]
,
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where en is the vector of ones of dimension n. Then the range of V̂ is equal to the range of (any)
Ŷ ∈ relintF , the relative interior of the minimal face, and we can facially reduce (5.3) using the
substitution

Y = V̂ ZV̂ T ∈ Skn+1, Z ∈ S(k−1)(n−1)+1.

The facially reduced SDP is then given by

cut(m) ≥ p∗SDP (G) = min 1
2 trace V̂

TLGV̂ Z

s.t. arrow (V̂ ZV̂ T ) = e0
GJ̄(V̂ ZV̂ T ) = GJ̄(e0eT0 )
DO(V̂ ZV̂ T ) =M

De(V̂ ZV̂ T ) = e

Z ≽ 0, Z ∈ S(k−1)(n−1)+1,

(5.4)

where we let J̄ := J ∪ (0, 0).250

We now present our final SDP relaxation (SDPfinal) in Theorem 5.1 below and discuss some of251

its properties. This relaxation is surprisingly simple/strong with many of the constraints in (5.4)252

redundant. In particular, we show that the problem is independent of the choice of d ∈ Rn in253

constructing G. We also show that the two constraints using DO,De are redundant in the SDP254

relaxation (SDPfinal). This answers affirmatively the question posed in [28] on whether these255

constraints were redundant in the SDP relaxation for the GP.256

Theorem 5.1. The facially reduced SDP (5.4) is equivalent to the single equality constrained prob-
lem

cut(m) ≥ p∗SDP (G) = min 1
2 trace

(
V̂ TLGV̂

)
Z

s.t. GJ̄(V̂ ZV̂ T ) = GJ̄(e0eT0 )
Z ≽ 0, Z ∈ S(k−1)(n−1)+1.

(SDPfinal)

The dual program is
max 1

2W00

s.t. V̂ TGJ̄(W )V̂ ≼ V̂ TLGV̂
(5.5)

Both primal and dual satisfy Slater’s constraint qualification and the objective function is indepen-257

dent of the d ∈ Rn chosen to form G.258

Proof. It is shown in [28] that the second constraint in (5.4) along with Z ≽ 0 implies that the
arrow constraint holds, i.e., the arrow constraint is redundant. It only remains to show that the
last two equality constraints in (5.4) are redundant. First, the gangster constraint using the linear
transformation GJ̄ implies that the blocks in Y = V̂ ZV̂ T satisfy diag Ȳ(ij) = 0 for all i ̸= j, where
Ȳ respects the block structure described in (A.3). Next, we note that Di ≽ 0, i = 1, 2 and Y ≽ 0.
Therefore, the Schur complement of Y00 implies that

Y ≽ Y0:kn,0Y T
0:kn,0.

Writing v1 := Y0:kn,0 and X = Mat(Y1:kn,0), we see further that

0 = trace(DiY ) ≥ trace(Div1v
T
1 ) =

{
∥Xe− e∥2 if i = 1,

∥XT e−m∥2 if i = 2.

17



This together with the arrow constraints show that trace Ȳ(ii) =
∑ni

j=(i−1)n+1 Yj0 = mi. Thus,259

DO(V̂ ZV̂ T ) = M holds. Similarly, one can see from the above and the arrow constraint that260

De(V̂ ZV̂ T ) = e holds.261

The conclusion about Slater’s constraint qualification for (SDPfinal) follows from [28, Theorem-
s 4.1], which discussed the primal SDP relaxations of the GP. That relaxation has the same feasible
set as (SDPfinal). In fact, it is shown in [28] that

Ẑ =

 1 0

0 1
n2(n−1)

(nDiag(m̄k−1)− m̄k−1m̄
T
k−1)⊗ (nIn−1 − En−1)

 ∈ S(k−1)(n−1)+1
+ ,

where m̄T
k−1 = (m1, . . . ,mk−1) and En−1 is the n−1 square matrix of ones, is a strictly feasible point

for (SDPfinal). The right-hand side of the dual (5.5) differs from the dual of the SDP relaxation
of the GP. However, let

Ŵ =

[
α 0
0 (Ek − Ik)⊗ In

]
.

From the proof of [28, Theorems 4.2] we see that GJ̄(Ŵ ) = Ŵ and

−V̂ TGJ̄(Ŵ )V̂ = V̂ T (−Ŵ )V̂

=

[
1 mT ⊗ eT /n
0 V T

k ⊗ V T
n

] [
−α 0
0 ((Ik − Ek)⊗ In

] [
1 0

m⊗ e/n Vk ⊗ Vn

]
=

[
−α+mT (Ik − Ek)m/n (mT (Ik −Ek)Vk)⊗ (eTVn)/n

(V T
k (Ik − Ek)m)⊗ (V T

n e)/n (V T
k (Ik − Ek)Vk)⊗ (V T

n Vn)

]
=

[
−α+mT (Ik − Ek)m/n 0

0 (Ik−1 + Ek−1)⊗ (In−1 + En−1)

]
≻ 0, for sufficiently large − α.

Therefore V̂ TGJ̄(βŴ )V̂ ≺ V̂ TLGV̂ for sufficiently large −α, β, i.e., Slater’s constraint qualification262

holds for the dual (5.5).263

Finally, we let Y = V̂ ZV̂ T with Z feasible for (SDPfinal). Then Y satisfies the gangster
constraints, i.e., diag Ȳ(ij) = 0 for all i ̸= j. On the other hand, if we restrict D = Diag(d),
then the objective matrix LD has nonzero elements only in the same diagonal positions of the
off-diagonal blocks from the application of the Kronecker product B ⊗ Diag(d). Thus, we must
have traceLDY = 0. Consequently, for all d ∈ Rn,

trace
(
V̂ TLGV̂

)
Z = traceLGV̂ ZV̂

T = traceLGY = traceLAY = trace V̂ LAV̂
TZ.

264

We next present two useful properties for finding/recovering approximate partition matrix so-265

lutions X from a solution Y of (SDPfinal).266

Proposition 5.2. Suppose that Y is feasible for (SDPfinal). Let v1 = Y1:kn,0 and
(
v0 vT2

)T
denote267

a unit eigenvector of Y corresponding to the largest eigenvalue. Then X1 := Mat(v1) ∈ E ∩ N .268

Moreover, if v0 ̸= 0, then X2 := Mat( 1
v0
v2) ∈ E. Furthermore, if, Y ≥ 0, then v0 ̸= 0 and X2 ∈ N .269
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Proof. The fact that X1 ∈ E was shown in the proof of Theorem 5.1. That X1 ∈ N follows from
the arrow constraint. We now prove the results for X2. Suppose first that v0 ̸= 0. Then

Y ≽ λ1(Y )

(
v0
v2

)(
v0
v2

)T
.

Using this and the definitions of Di and X2, we see further that

0 = trace(DiY ) ≥

{
λ1(Y )v20∥X2e− e∥2, if i = 1,

λ1(Y )v20∥XT
2 e−m∥2, if i = 2.

(5.6)

Since λ1(Y ) ̸= 0 and v0 ̸= 0, it follows that X2 ∈ E .270

Finally, suppose that Y ≥ 0. We claim that any eigenvector
(
v0 vT2

)T
corresponding to the271

largest eigenvalue must satisfy:272

1. v0 ̸= 0;273

2. all entries have the same sign, i.e., v0v2 ≥ 0.274

From these claims, it would follow immediately that X2 = Mat(v2/v0) ∈ N .275

To prove these claims, we note first from the classical Perron-Fröbenius theory, e.g., [6], that

the vector
(
|v0| |v2|T

)T
is also an eigenvector corresponding to the largest eigenvalue.2 Letting

χ := Mat(v2) and proceeding as in (5.6), we conclude that

∥χe− v0e∥2 = 0 and ∥|χ|e− |v0|e∥2 = 0.

The second equality implies that v0 ̸= 0. If v0 > 0, then for all i = 1, · · · , n, we have

k∑
j=1

χij = v0 =
k∑
j=1

|χij |,

showing that χij ≥ 0 for all i, j, i.e., v2 ≥ 0. If v0 < 0, one can show similarly that v2 ≤ 0. Hence,276

we have also shown v0v2 ≥ 0. This completes the proof.277

6 Feasible Solutions and Upper Bounds278

In the above we have presented several approaches for finding lower bounds for cut(m). In addition,279

we have found matrices X that approximate the bound and satisfy some of the graph partitioning280

constraints. Specifically, we obtain two approximate solutionsXA, XL ∈ E in (3.19), an approximate281

solution to (4.8) which can be transformed into an n×k matrix via (3.9), and the X1, X2 described282

in Proposition 5.2. We now use these to obtain feasible solutions (partition matrices) and thus283

obtain upper bounds.284

We show below that we can find the closest feasible partition matrix X to a given approximate285

matrix X̄ using linear programming, where X̄ is found, for example, using the projected eigenvalue,286

QP or SDP lower bounds. Note that (6.1) is a transportation problem and therefore the optimal X287

in (6.1) can be found in strongly polynomial time (O(n2)), see e.g., [25, 26].288

2Indeed, if Y is irreducible, the largest in magnitude eigenvalue is positive and a singleton and the corresponding
eigenspace is the span of a positive vector. Hence the conclusion follows. For a reducible Y , due to symmetry of Y ,
it is similar via permutation to a block diagonal matrix whose blocks are irreducible matrices. Thus, we can apply
the same argument to conclude similar results for the eigenspace corresponding to the largest magnitude eigenvalue.
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Theorem 6.1. Let X̄ ∈ E be given. Then the closest partition matrix X to X̄ in Fröbenius norm
can be found by using the simplex method to solve the linear program

min − trace X̄TX
s.t. Xe = e,

XT e = m,
X ≥ 0.

(6.1)

Proof. Observe that for any partition matrix X, traceXTX = n. Hence, we have

min
X∈Mm

∥X̄ −X∥2F = trace(X̄T X̄) + n+ 2 min
X∈Mm

trace
(
−X̄TX

)
.

The result now follows from this and the fact thatMm = ext(D), as stated in (2.1). (This is similar289

to what is done in [29].)290

7 Numerical Tests291

In this section, we provide empirical comparisons for the lower and upper bounds presented above.292

All the numerical tests are performed in MATLAB version R2012a on a single node of the COPS293

cluster at University of Waterloo. It is an SGI XE340 system, with two 2.4 GHz quad-core Intel294

E5620 Xeon 64-bit CPUs and 48 GB RAM, equipped with SUSE Linux Enterprise server 11 SP1.295

7.1 Random Tests with Various Sizes296

In this subsection, we compare the bounds on structured graphs. These are formed by first generat-297

ing k disjoint cliques (of sizes m1, . . . ,mk, randomly chosen from {2, ..., imax+1}). We join the first298

k− 1 cliques to every node of the kth clique. We then add u0 edges between the first k− 1 cliques,299

chosen uniformly at random from the complement graph. In our tests, we set u0 = ⌊ecp⌋, where ec300

is the number of edges in the complement graph and 0 ≤ p < 1. By construction, u0 ≥ cut(m).301
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Figure 7.1: Negative value for optimal γ

First, we note the following about the eigenvalue bounds. The two figures 7.1 and 7.2 show the302

difference in the projected eigenvalue bounds from using A − γDiag(d) for a random d ∈ Rn on303
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Figure 7.2: Positive value for optimal γ

two structured graphs. This is typical of what we saw in our tests, i.e., that the maximum bound304

is near γ = 0. We had similar results for the specific choice d = Ae. This empirically suggests that305

using A would yield a better projected eigenvalue lower bound. This phenomenon leads us to use306

A in subsequent tests below.307

In Table 7.1, we consider small instances where k = 4, 5, p = 20% and imax = 10. We consider
the projected eigenvalue bounds with G = −L (eig−L) and G = A (eigA), the QP bound with G =
A, the SDP bound and the doubly nonnegative programming (DNN) bound.3 For each approach,
we present the lower bounds (rounded up to the nearest integer) and the corresponding upper
bounds (rounded down to the nearest integer) obtained via the technique described in Section 6.4

We also present the following measure of accuracy, defined as

Gap =
best upper bound− best lower bound

best upper bound + best lower bound
. (7.1)

In terms of lower bounds, the DNN approach usually gives the best lower bounds. The SDP308

approach and the QP approach are comparable, while the projected eigenvalue lower bounds with309

A always outperforms the ones with −L. On the other hand, the DNN approach usually gives the310

best upper bounds.311

We consider medium-sized instances in Table 7.2, where k = 8, 10, 12, p = 20% and imax = 20.312

We do not consider DNN bounds due to computational complexity. We see that the lower bounds313

always satisfy eig−L ≤ eigA ≤ QP. In particular, we note that the (lower) projected eigenvalue314

bounds with A always outperform the ones with −L. However, what is surprising is that the lower315

projected eigenvalue bound with A sometimes outperforms the SDP lower bound. This illustrates316

the strength of the heuristic that replaces the quadratic objective function with the sum of a317

quadratic and linear term and then solves the linear part exactly over the partition matrices.318

3The doubly nonnegative programming relaxation is obtained by imposing the constraint V̂ ZV̂ T ≥ 0 onto
(SDPfinal). Like the SDP relaxation, the bound obtained from this approach is independent of d. In our im-
plementation, we picked G = A for both the SDP and the DNN bounds.

4The SDP and DNN problems are solved via SDPT3 (version 4.0), [27], with tolerance gaptol set to be 1e−6
and 1e−3 respectively. The problems (4.4) and (4.8) are solved via SDPT3 (version 4.0) called by CVX (version
1.22), [11], using the default settings. The problem (6.1) is solved using simplex method in MATLAB, again using
the default settings.
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Data Lower bounds Upper bounds Gap
n k |E| u0 eig−L eigA QP SDP DNN eig−L eigA QP SDP DNN
31 4 362 25 21 22 24 23 25 68 102 25 36 25 0.0000
18 4 86 16 13 14 15 16 16 22 35 16 19 16 0.0000
29 5 229 44 32 37 40 39 44 76 74 44 53 44 0.0000
41 5 453 91 76 84 86 86 91 159 162 101 125 102 0.0521

Table 7.1: Results for small structured graphs

Data Lower bounds Upper bounds Gap
n k |E| u0 eig−L eigA QP SDP eig−L eigA QP SDP
69 8 1077 317 249 283 290 281 516 635 328 438 0.0615
114 8 3104 834 723 785 794 758 1475 1813 834 1099 0.0246
85 8 2164 351 262 319 327 320 809 384 367 446 0.0576
116 10 3511 789 659 725 737 690 1269 2035 796 1135 0.0385
104 10 2934 605 500 546 554 529 1028 646 631 836 0.0650
78 10 1179 455 358 402 413 389 708 625 494 634 0.0893
129 12 3928 1082 879 988 1001 965 1994 1229 1233 1440 0.1022
120 12 3102 1009 833 913 926 893 1627 1278 1084 1379 0.0786
126 12 2654 1305 1049 1195 1218 1186 1767 1617 1361 1736 0.0554

Table 7.2: Results for medium-sized structured graphs

In Table 7.3, we consider larger instances with k = 35, 45, 55, p = 20% and imax = 100. We319

do not consider SDP and DNN bounds due to computational complexity. We see again that the320

projected eigenvalue lower bounds with A always outperforms the ones with −L.321

Data Lower bounds Upper bounds Gap
n k |E| u0 eig−L eigA eig−L eigA

2012 35 575078 361996 345251 356064 442567 377016 0.0286
1545 35 351238 210375 193295 205921 258085 219868 0.0328
1840 35 439852 313006 295171 307139 371207 375468 0.0944
1960 45 532464 346838 323526 339707 402685 355098 0.0222
2059 45 543331 393845 369313 386154 469219 483654 0.0971
2175 45 684405 419955 396363 412225 541037 581416 0.1351
2658 55 924962 651547 614044 638827 780106 665760 0.0206
2784 55 1063828 702526 664269 690186 853750 922492 0.1059
2569 55 799319 624819 586527 612605 721033 713355 0.0760

Table 7.3: Results for larger structured graphs

We now briefly comment on the computational time (measured by MATLAB tic-toc function)322

for the above tests. For lower bounds, the eigenvalue bounds are fastest to compute. Computational323

time for small, medium and larger problems are usually less than 0.01 seconds, 0.1 seconds and324

0.5 minutes, respectively. The QP bounds are more expensive to compute, taking around 0.5 to 2325

seconds for small instances and 0.5 to 10 minutes for medium-sized instances. The SDP bounds326

are even more expensive to compute, taking 0.5 to 3 seconds for small instances and 2 minutes to327
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2.5 hours for medium-sized instances. The DNN bounds are the most expensive to compute. Even328

for small instances, it can take 20 seconds to 40 minutes to compute a bound. For upper bounds,329

using the MATLAB simplex method, the time for solving (6.1) takes a few seconds for small and330

medium-sized problems; while for the larger problems in Tables 7.3, it takes 2 to 10 minutes.331

Finding a Vertex Separator. Before ending this subsection, we comment on how the above332

bounds can possibly be used in finding vertex separators whenm is not explicitly known beforehand.333

Since there can be at most
(
n−1
k−1

)
k-tuples of integers summing up to n, theoretically, one can334

consider all possible such m and estimate the corresponding cut(m) with the bounds above.335

As an illustration, we consider a concrete instance of a structured graph, generated with n = 600,336

m1 = m2 = m3 = 200 and p = 0. Thus, we have k = 3, and, by construction, cut(m) = 0.337

Suppose that the correct size vector m is not known in advance. Therefore we now consider338

a range of estimated vectors m′. In Table 7.4, we consider sizes m′
1 and m′

2 with values taken339

between 180 to 220, with m′
3 = 600 − m′

1 − m′
2. Since the roles of m′

1 and m′
2 are symmetric,340

we only include the cases where m′
1 ≤ m′

2. We report on the eigenvalue bounds, the QP bounds341

and the SDP bounds for each m′. Observe that the SDP lower bounds are usually the largest342

while the QP upper bounds are usually the smallest. The existence of a vertex separator when343

m1 = m2 = m3 = 200 is identified by the QP and SDP bounds.5 Furthermore, the QP upper344

bound being zero for the cases (m′
1,m

′
2) = (180, 180), (180, 200) also indicates the existence of a345

vertex separator.346

Data Lower bounds Upper bounds
m′

1 m′
2 eig−L eigA QP SDP eig−L eigA QP SDP

180 180 -3600 -2400 -2400 -1800 2520 32400 0 540
180 200 -1922 -1281 -1270 -949 2538 36000 0 3240
180 220 -99 -66 -16 0 3600 39600 3600 4312
200 200 0 0 1 0 2200 39801 0 0
200 220 2074 2716 2759 4000 4000 40000 4398 11832
220 220 4400 5867 5867 8400 8400 40241 8400 12916

Table 7.4: Results for medium-sized graph without an explicitly known m

7.2 Large Sparse Projected Eigenvalue Bounds347

We assume that n ≫ k. The projected eigenvalue bound in Theorem 3.7 in (3.13) is composed of348

a constant term, a minimal scalar product of k − 1 eigenvalues and a linear term. The constant349

term and linear term are trivial to evaluate and essentially take no CPU time. The evaluation of350

the k− 1 eigenvalues of B̂ is also efficient and accurate as the matrix is small and symmetric. The351

only significant cost is the evaluation of the largest k − 2 eigenvalues and the smallest eigenvalue352

of Ĝ. In our test below, we use G = A for simplicity. This choice is also justified by our numerical353

results in the previous subsection and the observation from Figures 7.1 and 7.2.354

We use the MATLAB eigs command for the k − 1 eigenvalues of V TAV for the lower bound.355

Since the corresponding (6.1) has much larger dimension than we considered in the previous sub-356

5In this case, the approximate optimal value of (4.8) returned by the SDP solver is in the order of 10−5. We
obtain a 1 for the QP lower bound since we always round up to the smallest integer exceeding it.
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section, we turn to IBM ILOG CPLEX version 12.4 (MATLAB interface) with default settings to357

solve for the upper bound. We use the MATLAB tic-toc function to time the routine for finding358

the lower bound, and report output.time from the function cplexlp.m as the cputime for finding the359

upper bound.360

We use two different choices V0 and V1 for the matrix V in (3.7).361

1. We choose the following matrix V0 with mutually orthogonal columns that satisfies V T
0 e = 0.6

V0 =



1 1 1 . . . 1
−1 1 1 . . . 1
0 −2 1 . . . 1
0 0 −3 . . . 1
. . . . . . . . . . . .
0 0 0 . . . −(n− 1)


Let s =

(
∥V0(:, i)∥

)
∈ Rn−1. Then the operation needed for the MATLAB large sparse

eigenvalue function eigs is (∗ denotes multiplication and ·′ denotes transpose, ./ denotes
elementwise division)

Â ∗ v = V ′ ∗ (A ∗ (V ∗ v)) = V ′
0 ∗ (A ∗ (V0 ∗ (v./s)))./s. (7.2)

Thus we never form the matrix Â and we preserve the structure of V0 and sparsity of A when362

doing the matrix-vector multiplications.363

2. An alternative approach uses

V1 =



[
I⌊n2 ⌋ ⊗

1√
2

[
1
−1

]]
0(n−2⌊n2 ⌋),⌊n2 ⌋



I⌊n4 ⌋ ⊗ 1

2


1
1
−1
−1




0(n−4⌊n4 ⌋),⌊n4 ⌋


[
. . .
] [
V̂
]

n×n−1

i.e., the block matrix consisting of t blocks formed from Kronecker products along with one364

block V̂ to complete the appropriate size so that V TV = In−1, V
T e = 0. We take advantage365

of the 0, 1 structure of the Kronecker blocks and delay the scaling factors till the end. Thus366

we use the same type of operation as in (7.2) but with V1 and the new scaling vector s.367

The results on large scale problems using the two choices V0 and V1 are reported in Tables 7.5,368

7.6 and 7.7. For simplicity, we only consider random graphs, with various imax and k and generate369

m as described in the beginning of Section 7.1. We then use the command370

A=sprandsym(n,dens); A(1:n+1:end)=0; A(abs(A)>0)=1;371

to generate a random incidence matrix, with dens = 0.05/i, for i = 1, . . . , 5. In the tables, we372

present the number of nodes, sets, edges (n, k, |E|), the true density of the random graph density :=373

6Choosing a sparse V in the orthogonal matrix in (3.7) would speed up the calculation of the eigenvalues. Choosing
a sparse V would be easier if V did not require orthonormal columns but just linearly independent columns, i.e., if
we could arrange for a parametrization as in Lemma 3.6 without P orthogonal.

24



2|E|/(n(n− 1)), the lower and upper projected eigenvalue bounds, the gap (7.1), and the cputime374

(in seconds) for computing the bounds.375

The results using the matrix V0 are in Tables 7.5. Here the cost for finding the lower bound376

using the eigenvalues becomes significantly higher than the cost for finding the upper bound using377

the simplex method.378

n k |E| density lower upper gap cpu (low) cpu (up)
13685 68 4566914 4.88× 10−2 3958917 4271928 0.0380 409.4 7.1
13599 65 2282939 2.47× 10−2 1967979 2181778 0.0515 330.1 6.1
13795 68 1572487 1.65× 10−2 1314033 1495421 0.0646 316.2 7.9
13249 66 1090447 1.24× 10−2 832027 985375 0.0844 265.6 7.4
12425 66 767961 9.95× 10−3 589226 710093 0.0930 253.2 6.0

Table 7.5: Large scale random graphs; imax 400; k ∈ [65, 70], using V0

The results using the matrix V1 are shown in Tables 7.6 and 7.7. We can see the obvious379

improvement in cputime when finding the lower bounds using V1 compared to using V0, which380

becomes more significant when the graph gets sparser.381

n k |E| density lower upper gap cpu (low) cpu (up)
14680 69 5254939 4.88× 10−2 4586083 4955524 0.0387 262.9 6.4
14464 65 2583109 2.47× 10−2 2133187 2397098 0.0583 135.5 6.0
14974 69 1852955 1.65× 10−2 1555718 1776249 0.0662 98.2 6.9
13769 65 1177579 1.24× 10−2 956260 1124729 0.0810 44.4 5.9
13852 69 954632 9.95× 10−3 775437 924265 0.0876 51.3 6.0

Table 7.6: Large scale random graphs; imax 400; k ∈ [65, 70], using V1

n k |E| density lower upper gap cpu (low) cpu (up)
22840 80 12721604 4.88× 10−2 11548587 12262688 0.0300 782.4 12.5
16076 77 3190788 2.47× 10−2 2754650 3053622 0.0515 199.1 8.9
20635 77 3519170 1.65× 10−2 2916188 3287657 0.0599 228.5 10.1
19408 79 2339682 1.24× 10−2 1989278 2272340 0.0664 147.3 10.6
17572 76 1536161 9.95× 10−3 1188933 1417085 0.0875 83.6 9.0

Table 7.7: Large scale random graphs; imax 500; k ∈ [75, 80], using V1

In all three tables, we note that the relative gaps deteriorate as the density decreases. Also, the382

cputime for the eigenvalue bound is significantly better when using V1 suggesting that sparsity of383

V1 is better exploited in the MATLAB eigs command.384

8 Conclusion385

In this paper, we presented eigenvalue, projected eigenvalue, QP, and SDP lower and upper bounds386

for a minimum cut problem. In particular, we looked at a variant of the projected eigenvalue bound387

25



found in [20] and showed numerically that our variant is stronger. We also proposed a new QP388

bound following the approach in [1], making use of a duality result presented in [19]. In addition, we389

studied an SDP relaxation and demonstrated its strength by showing the redundancy of quadratic390

(orthogonality) constraints. We emphasize that these techniques for deriving bounds for our cut391

minimization problem can be adapted to derive new results for the GP. Specifically, one can easily392

adapt our derivation and obtain a QP lower bound for the GP, which was not previously known in393

the literature. Our derivation of the simple facially reduced SDP relaxation (SDPfinal) can also be394

adapted to simplify the existing SDP relaxation for the GP studied in [28].395

We also compared these bounds numerically on randomly generated graphs of various sizes.396

Our numerical tests illustrate that the projected eigenvalue bounds can be found efficiently for397

large scale sparse problems and that they compare well against other more expensive bounds on398

smaller problems. It is surprising that the projected eigenvalue bounds using the adjacency matrix399

A are both cheap to calculate and strong.400

A Notation for the SDP Relaxation401

In this appendix, we describes the constraints of the SDP relaxation (5.3) in detail.402

1. The arrow linear transformation acts on Skn+1,

arrow (Y ) := diag(Y )− (0, Y0,1:kn)
T , (A.1)

Y0,1:kn is the vector formed from the last kn components of the first row (indexed by 0) of Y .403

The arrow constraint represents X ∈ Z.404

2. The norm constraints for X ∈ E are represented by the constraints with the two (kn+ 1) ×
(kn+ 1) matrices

D1 :=

[
n −eTk ⊗ eTn

−ek ⊗ en (eke
T
k )⊗ In

]
,

D2 :=

[
mTm −mT ⊗ eTn
−m⊗ en Ik ⊗ (ene

T
n )

]
,

where ej is the vector of ones of dimension j.405

3. We let GJ represent the gangster operator on Skn+1, i.e., it shoots holes/zeros in a matrix,

(GJ(Y ))ij :=

{
Yij if (i, j) or (j, i) ∈ J
0 otherwise,

(A.2)

J :=

{
(i, j) : i = (p− 1)n+ q, j = (r − 1)n+ q, for

p < r, p, r ∈ {1, . . . , k}
q ∈ {1, . . . , n}

}
.

The gangster constraint represents the (Hadamard) orthogonality of the columns of X. The406

positions of the zeros are the diagonal elements of the off-diagonal blocks Ȳ(ij), 1 < i < j, of407

Y ; see the block structure in (A.3) below.408
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4. Again, by abuse of notation, we use the symbols for the sets of constraints DO,De to represent
the linear transformations in the SDP relaxation (5.3). Note that

⟨Ψ, XTX⟩ = trace IXΨXT = vec(X)T (Ψ⊗ I) vec(X).

Therefore, the adjoint of DO is made up of a zero row/column and k2 blocks that are multiples
of the identity:

D∗
O(Ψ) =

[
0| 0

0| Ψ⊗ In

]
.

If Y is blocked appropriately as

Y =

[
Y00| Y0,:
Y:,0| Ȳ

]
, Ȳ =


Ȳ(11) Ȳ(12) · · · Ȳ(1k)
Ȳ(21) Ȳ(22) · · · Ȳ(2k)
...

. . .
. . .

...

Ȳ(k1)
. . .

. . . Ȳ(kk)

 , (A.3)

with each Ȳ(ij) being a n× n matrix, then

DO(Y ) =
(
trace Ȳ(ij)

)
∈ Sk. (A.4)

Similarly,

⟨ϕ, diag(XXT )⟩ = ⟨Diag(ϕ), XXT ⟩ = vec(X)T (Ik ⊗Diag(ϕ)) vec(X).

Therefore we get the sum of the diagonal parts

De(Y ) =

k∑
i=1

diag Ȳ(ii) ∈ Rn. (A.5)
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N = {1, . . . , n}, 4415

Pm, set of all partitions, 4416

Diag, 3, 4417

GJ , gangster constraint, 17, 26418

Mat(x), matrix from vector, 4419

Mm, set of all partition matrices, 4420

On, orthogonal matrices, 8421

Rn×k, n× k matrices, 4422

Sk, symmetric matrices, 5423

arrow , arrow constraint, 26424

J̄ := J ∪ (0, 0), 17425

·∗, adjoint, 4426

cut(S), 5427

δ(Si, Sj), set of edges between Si, Sj , 5428

diag, 4429

vec(X), vector from matrix, 4430

⟨x, y⟩−, minimal scalar product, 7431

B̃ =M1/2BM1/2, 6, 7432

M̃ = Diag(m̃), 6433

m̃, 6434

X̂ = 1
nem

T , 9435

e, vector of ones, 4436

ext, extreme points, 4437

m, set sizes, 4438

G, graph, 4439

adjoint, ·∗, 4440

arrow constraint, arrow , 26441

constraints, 4442

D, doubly stochastic type, 4443

De, e-diag. orthogonality, 4444

DO, m-diag. orthogonality, 4445

E , linear equalities, 4446

G, gangster set, 4447

N , nonnegativity, 4448

Z, zero-one, 4449

cut minimization problem, 6450

extreme points, ext, 4451

facial reduction, 16452

gangster constraint, GJ , 17, 26453

graph454

A, adjacency matrix, 5455

L, Laplacian matrix, 5456

G, 4457

adjacency matrix, A, 5458

edge set, E = E(G), 4459

Laplacian matrix, L, 5460

node set, N = N(G), 4461

graph partitioning problem, GP, 3462

Hadamard product, A ◦B, 4, 15463

Kronecker product, A⊗B, 4464

matrix from vector, Mat(x), 4465

MC, minimum cut problem, 3466

minimal scalar product, ⟨x, y⟩−, 7467

minimum cut problem, MC, 3468

objective function, 6469

orthogonal matrices, On, 8470

partition matrices, 3471

partitions, 4472

Pm, set of all partitions, 4473

partition matrix, X, 4474

set of all partition matrices,Mm, 4475

set of all partitions, Pm, 4476

QAP, quadratic assignment problem, 12477

QP, quadratic program, 12478

quadratic assignment problem, QAP, 12479

quadratic program, QP, 12480

SDP, semidefinite programmming, 3481

semidefinite programmming, SDP, 3482

set sizes, m, 4483

symmetric matrices, Sk, 5484
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trace inner-product, 5485

vector from matrix, vec(X), 4486

vector of ones, e, 4487

vertex separator problem, VS, 3488

vertex separator, VS, 5489

VS, vertex separator, 5490

VS, vertex separator problem, 3491
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