Abstract
The box placement problem involves finding a location to place a rectangular box into a container given n rectangular boxes that have already been placed. It commonly arises as a subproblem in many algorithms for cutting stock problems as well as 2D/3D packing problems. We show that the box placement problem is closely related to some well-studied problems in computational geometry, such as the maximum depth problem and Klee’s measure problem. This allows us to leverage on existing techniques for these problems to develop new algorithms for the box placement problem that are not only conceptually simpler but also asymptotically fastest for 2D and faster than existing approaches for 3D. Our implementations rely on augmenting the standard segment tree for 2D or quadtree for 3D, and can be directly incorporated as subroutines into many algorithms for cutting and packing problems.













Similar content being viewed by others
References
Ahmadinia, A., Bobda, C., Fekete, S., Teich, J., van der Veen, J.C.: Optimal free-space management and routing-conscious dynamic placement for reconfigurable devices. IEEE Trans. Comput. 56(5), 673–680 (2007). doi:10.1109/TC.2007.1028
Babu, A.R., Babu, N.R.: Effective nesting of rectangular parts in multiple rectangular sheets using genetic and heuristic algorithms. Int. J. Prod. Res. 37(7), 1625–1643 (1999). doi:10.1080/002075499191166
Baker, B.S., Coffman, E.G., Rivest, R.L.: Orthogonal packings in two dimensions. SIAM J. Comput. 9(4), 846–855 (1980). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJCAT000009000004000846000001&idtype=cvips&gifs=yes
Bennell, J., Song, X.: A beam search implementation for the irregular shape packing problem. J. Heuristics 16(2), 167–188 (2010). doi:10.1007/s10732-008-9095-x
Burke, E.K., Hellier, R.S.R., Kendall, G., Whitwell, G.: Irregular packing using the line and arc no-fit polygon. Oper. Res. 58(4–Part–1), 948–970 (2010). doi:10.1287/opre.1090.0770
Chan, T.M.: A (slightly) faster algorithm for Klee’s measure problem. Comput. Geom. (2009). doi:10.1016/j.comgeo.2009.01.007
Chazelle, B.: The bottomn-left bin-packing heuristic: an efficient implementation. IEEE Trans. Comput. C–32(8), 697–707 (1983). doi:10.1109/TC.1983.1676307
Chlebus, B.: On the Klee’s measure problem in small dimensions. In: Rovan, B. (ed.) SOFSEM’98: Theory and Practice of Informatics. Lecture Notes in Computer Science, vol. 1521, Chap. 22, pp. 304–311. Springer, Berlin (1998). doi:10.1007/3-540-49477-4_22
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). http://www.worldcat.org/isbn/3540779736
Gendreau, M., Iori, M., Laporte, G., Martello, S.: A Tabu search algorithm for a routing and container loading problem. Transp. Sci. 40(3), 342–350 (2006). doi:10.1287/trsc.1050.0145
Healy, P., Creavin, M., Kuusik, A.: An optimal algorithm for rectangle placement. Oper. Res. Lett. 24(1–2), 73–80 (1999). doi:10.1016/S0167-6377(98)00048-0, http://www.sciencedirect.com/science/article/B6V8M-43GHSPF-B/2/42b6ea739a362592dccfb090350a5a34
Hopper, E., Turton, B.C.H.: An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. Eur. J. Oper. Res. 128(1), 34–57 (2001). doi:10.1016/s0377-2217(99)00357-4
Jakobs, S.: On genetic algorithms for the packing of polygons. Eur. J. Oper. Res. 88(1), 165–181 (1996). doi:10.1016/0377-2217(94)00166-9
Overmars, M.H., Yap, C.K.: New upper bounds in Klee’s measure problem. SIAM J. Comput. 20(6), 1034–1045 (1991). doi:10.1137/0220065
Vanleeuwen, J., Wood, D.: The measure problem for rectangular ranges in d-space. J. Algorithm. 2(3), 282–300 (1981). doi:10.1016/0196-6774(81)90027-4
Wu, Y.: An effective quasi-human based heuristic for solving the rectangle packing problem. Eur. J. Oper. Res. 141(2), 341–358 (2002). doi:10.1016/S0377-2217(02)00129-7
Zhu, W., Lim, A.: A new iterative-doubling Greedy-Lookahead algorithm for the single container loading problem. Eur. J. Oper. Res. 222(3), 408–417 (2012). doi:10.1016/j.ejor.2012.04.036
Zhu, W., Oon, W.C., Lim, A., Weng, Y.: The six elements to block-building approaches for the single container loading problem. Appl. Intell. 37(3), 431–445 (2012). doi:10.1007/s10489-012-0337-0
Zhu, W., Qin, H., Lim, A., Wang, L.: A two-stage Tabu Search Algorithm with enhanced packing heuristics for the 3L-CVRP and M3L-CVRP. Comput. Oper. Res. 39(9), 191–199 (2012). doi:10.1016/j.cor.2011.11.001
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhu, W., Luo, Z., Lim, A. et al. A fast implementation for the 2D/3D box placement problem. Comput Optim Appl 63, 585–612 (2016). https://doi.org/10.1007/s10589-015-9780-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-015-9780-2