Skip to main content

Advertisement

Log in

Approximated perspective relaxations: a project and lift approach

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The perspective reformulation (PR) of a Mixed-Integer NonLinear Program with semi-continuous variables is obtained by replacing each term in the (separable) objective function with its convex envelope. Solving the corresponding continuous relaxation requires appropriate techniques. Under some rather restrictive assumptions, the Projected PR (\(\mathrm{P}^2\mathrm{R}\)) can be defined where the integer variables are eliminated by projecting the solution set onto the space of the continuous variables only. This approach produces a simple piecewise-convex problem with the same structure as the original one; however, this prevents the use of general-purpose solvers, in that some variables are then only implicitly represented in the formulation. We show how to construct an Approximated Projected PR (\(\mathrm{AP}^2\mathrm{R}\)) whereby the projected formulation is “lifted” back to the original variable space, with each integer variable expressing one piece of the obtained piecewise-convex function. In some cases, this produces a reformulation of the original problem with exactly the same size and structure as the standard continuous relaxation, but providing substantially improved bounds. In the process we also substantially extend the approach beyond the original \(\mathrm{P}^2\mathrm{R}\) development by relaxing the requirement that the objective function be quadratic and the left endpoint of the domain of the variables be non-negative. While the \(\mathrm{AP}^2\mathrm{R}\) bound can be weaker than that of the PR, this approach can be applied in many more cases and allows direct use of off-the-shelf MINLP software; this is shown to be competitive with previously proposed approaches in some applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abhishek, K., Leyffer, S., Linderoth, J.: FilMINT: an outer-approximation-based solver for nonlinear mixed integer programs. INFORMS J. Comput. 22, 555–567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, W.P., Sherali, H.D.: A tight linearization and an algorithm for zero-one quadratic programming problems. Manag. Sci. 32(10), 1274–1290 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adams, W.P., Sherali, H.D.: Linearization strategies for a class of zero-one mixed integer programming problems. Op. Res. 38(2), 217–226 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adams, W.P., Sherali, H.D.: Mixed-integer bilinear programming problems. Math. Progr. 59(3), 279–306 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agnetis, A., Grande, E., Pacifici, A.: Demand allocation with latency cost functions. Math. Progr. 132(1–2), 277–294 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aktürk, S., Atamtürk, A., Gürel, S.: A strong conic quadratic reformulation for machine-job assignment with controllable processing times. Op. Res. Lett. 37(3), 187–191 (2009)

    Article  MATH  Google Scholar 

  7. Bonami, P., Kilinç, M., Linderoth, J.: Algorithms and software for convex mixed integer nonlinear programs. In: S. Leyffer J. Lee, (ed.), Mixed Integer Nonlinear Programming, volume 154 of The IMA Volumes in Mathematics and its Applications, pages 61–89. (2012)

  8. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Progr. 86, 595–614 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cui, X., Zheng, X., Zhu, S., Sun, X.: Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems. J. Glob. Optim. 56(4), 1409–1423 (2012)

    Article  MathSciNet  Google Scholar 

  10. Frangioni, A., Galli, L., Scutellà, M.G.: Delay-constrained shortest paths: approximation algorithms and second-order cone models. J. Optim. Theory Appl. 164(3), 1051–1077 (2015)

    Article  MathSciNet  Google Scholar 

  11. Frangioni, A., Gentile, C.: Perspective cuts for 0–1 mixed integer programs. Math. Progr. 106(2), 225–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frangioni, A., Gentile, C.: SDP diagonalizations and perspective cuts for a class of nonseparable MIQP. Op. Res. Lett. 35(2), 181–185 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frangioni, A., Gentile, C.: A computational comparison of reformulations of the perspective relaxation: SOCP vs cutting planes. Op. Res. Lett. 37(3), 206–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frangioni, A., Gentile, C., Grande, E., Pacifici, A.: Projected perspective reformulations with applications in design problems. Op. Res. 59(5), 1225–1232 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frangioni, A., Gentile, C., Lacalandra, F.: Solving unit commitment problems with general ramp contraints. Int. J. Electr. Power Energy Syst. 30, 316–326 (2008)

    Article  Google Scholar 

  16. Frangioni, A., Gentile, C., Lacalandra, F.: Tighter approximated MILP formulations for unit commitment problems. IEEE Trans. Power Syst. 24(1), 105–113 (2009)

    Article  Google Scholar 

  17. Frangioni, A., Gentile, C., Lacalandra, F.: Sequential Lagrangian-MILP approaches for unit commitment problems. Int. J. Electr. Power Energy Syst. 33, 585–593 (2011)

    Article  Google Scholar 

  18. Frangioni, A., Gorgone, E.: A library for continuous convex separable quadratic knapsack problems. Eur. J. Oper. Res. 229(1), 37–40 (2013)

    Article  MathSciNet  Google Scholar 

  19. Gounaris, C.E., Floudas, C.A.: Tight convex underestimators for \(C^2\)-continuous problems: I. univariate functions. J. Glob. Optim. 42, 51–67 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Günlük, O., Lee, J., Weismantel, R.: MINLP Strengthening for Separable Convex Quadratic Transportation-Cost UFL. IBM Research Report RC24213, IBM Research Division, (2007)

  21. Günlük, O., Linderoth, J.: Perspective relaxation of MINLPs with indicator variables. In: A. Lodi, A. Panconesi, and G. Rinaldi. (eds.), Proceedings \(13th\) IPCO, volume 5035 of Lecture Notes in Computer Science, pp. 1–16, (2008)

  22. Günlük, O., Linderoth, J.: Perspective reformulation and applications. In: S. Leyffer J. Lee. (ed.), Mixed Integer Nonlinear Programming, volume 154 of The IMA Volumes in Mathematics and its Applications, pp. 61–89. (2012)

  23. Hijazi, H., Bonami, P., Cornuejols, G., Ouorou, A.: Mixed integer nonlinear programs featuring “on/off” constraints: convex analysis and applications. Electron. Notes Discret. Math. 36(1), 1153–1160 (2010)

    Article  Google Scholar 

  24. Khajavirad, A., Sahinidis, N.V.: Convex envelopes generated from finitely many compact convex sets. Math. Progr. 137(1–2), 371–408 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lemaréchal, C., Ouorou, A., Petrou, G.: A bundle-type algorithm for routing in telecommunication data networks. Comput. Optim. Appl. 44(3), 385–409 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Leyffer, S.: Experiments with MINLP branching techniques. In: European Workshop on Mixed Integer Nonlinear Programming, (2010)

  27. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math. Progr. 86, 515–532 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tahanan, M., van Ackooij, W., Frangioni, A., Lacalandra, F.: Large-scale Unit Commitment under uncertainty. 4OR 13(2), 115–171 (2015)

    Article  MathSciNet  Google Scholar 

  29. Tawarmalani, M., Richard, J.-P.P., Xiong, C.: Explicit convex and concave envelopes through polyhedral subdivisions. Math. Progr. 138, 531–577 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Progr. 103, 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tawarmalani, M., Sahinidis, N.V.: Semidefinite relaxations of fractional programs via novel convexification techniques. J. Glob. Optim. 20, 133–154 (2001)

    Article  MathSciNet  Google Scholar 

  32. Tawarmalani, M., Sahinidis, N.V.: Convex extensions and envelopes of lower semi-continuous functions. Math. Progr. 93, 515–532 (2002)

    Article  MathSciNet  Google Scholar 

  33. Zamora, J.M., Grossmann, I.E.: A global mINLP optimization algorithm for the synthesis of heat exchanger networks with no stream splits. Comput. Chem. Eng. 22, 367–384 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The first and third authors gratefully acknowledge the contribution of the Italian Ministry for University and Research under the PRIN 2012 Project 2012JXB3YF “Mixed-Integer Nonlinear Optimization: Approaches and Applications”, as well as of the European Union under the 7FP Marie Curie Initial Training Network n. 316647 “MINO: Mixed-Integer Nonlinear Optimization”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Frangioni.

Appendix

Appendix

In this appendix we show that \(\mathrm{P}^2\mathrm{R}\) and \(\mathrm{AP}^2\mathrm{R}\) can be extended to the case \(p_{min} < 0\), albeit at the cost of slightly larger formulations. We first prove an analogous result to Proposition 1.

Proposition 2

If \(p_{min} < 0\) then z(p) defined in (19) has the form

$$\begin{aligned} z(p) = \left\{ \begin{array}{l@{\quad }l} \, z_2(p) = f(p) + c &{} \text{ if } \quad p_{min} \le p \le p^-_{int} \\ z^-_1(p) = \big ( f( p^-_{int} ) / p^-_{int} + c / p^-_{int} \big ) p &{} \text{ if } \quad p^-_{int} \le p \le 0 \\ z^+_1(p) = \big ( f( p^+_{int} ) / p^+_{int} + c / p^+_{int} \big ) p &{} \text{ if } \quad 0 \le p \le p^+_{int} \\ \, z_2(p) = f(p) + c &{} \text{ if } \quad p^+_{int} \le p \le p_{max} \end{array}\right. \end{aligned}$$
(32)

where \(p^-_{int} \in \{p_{min},1/g^-,0\}\) and \(p^+_{int} \in \{0,1/g^+,p_{max}\}\).

Proof

In this case, the form (13) of the constraints in (8) is no longer valid; indeed, \(u p_{min} \le p\) rather gives \(u \ge p/p_{min}\), and therefore one obtains

$$\begin{aligned} \max \left\{ \, \frac{p}{p_{max}} ,\frac{p}{p_{min}} \, \right\} \le u \le 1. \end{aligned}$$
(33)

Yet, the result of the leftmost “\(\max \)” only depends on the sign of p; in particular

$$\begin{aligned} p\ge & {} 0 \Longrightarrow \max \{ \, p/p_{max} ,p/p_{min} \, \} = p/p_{max} \\ p\le & {} 0 \Longrightarrow \max \{ \, p/p_{max} ,p/p_{min} \, \} = p/p_{min} . \end{aligned}$$

Therefore, we can proceed by cases, mirroring the previous development with the necessary changes:

  1. a.

    If (9) has no solution, the global minimum in (8) is one of the bounds in (33), and there are two sub cases:

    1. a.1.

      The derivative is always negative, and therefore \(u^*(p) = 1\Longrightarrow \) (15) holds (i.e., \(p_{min} = p_{max} = 0\)).

    2. a.2.

      The derivative is always positive, and therefore for \(p < 0\), \(u^*(p) = p / p_{min}\Longrightarrow \) (14) holds, for \(p \ge 0\), \(u^*(p) = p / p_{max}\Longrightarrow \) (17) holds.

    All in all, in this case

    $$\begin{aligned} z(p) = \left\{ \begin{array}{ll} \big ( f( p_{min} ) / p_{min} + c / p_{min} \big ) p &{} \text{ if } p < 0 \\ \big ( f( p_{max} ) / p_{max} + c / p_{max} \big ) p &{} \text{ if } p \ge 0 \end{array}\right. . \end{aligned}$$
    (34)
  2. b.

    If, instead, the only solution to (9) is (11), one has to separately consider \([p_{min}, 0]\) and \([0, p_{max}]\), since \(u^*(p) = \tilde{u}(p)\) if

    $$\begin{aligned} p \in [p_{min}, 0]&\quad \quad \Longrightarrow \quad \quad&p/p_{min} \le \tilde{u}(p) = - p g^- \le 1 \\ p \in [0, p_{max}]&\quad \quad \Longrightarrow \quad \quad&p/p_{max} \le \tilde{u}(p) = \,\, p g^+ \le 1 \end{aligned}$$

    That is, exactly two of the following four cases hold:

    1. b.1.

      \(p \ge 0\) and \(\tilde{u}(p) \le p / p_{max}\Longleftrightarrow p_{max} \le 1/g^+\Longrightarrow u^*(p) = p / p_{max}\Longrightarrow \) (17) holds.

    2. b.2.

      \(p \ge 0\) and \(\tilde{u}(p) \ge p / p_{max}\Longleftrightarrow p_{max} \ge 1/g^+\); two further sub cases arise:

      1. b.2.1.

        \((p_{max} \ge ) \, p \ge 1/g^+ \, (\ge 0)\Longrightarrow \tilde{u}(p) \ge 1\Longrightarrow u^*(p) = 1\Longrightarrow \) (15) holds.

      2. b.2.2.

        \((0 \le ) \, p \le 1/g^+ \, (\le p_{max})\Longrightarrow \tilde{u}(p) \le 1\Longrightarrow u^*(p) = \tilde{u}(p)\Longrightarrow \) (18) holds.

      This again gives (19).

    3. b.3.

      \(p \le 0\) and \(\tilde{u}(p) \le p / p_{min}\Longleftrightarrow (0 >) \, p_{min} \ge - 1/g^-\Longrightarrow u^*(p) = p / p_{min}\Longrightarrow \) (14).

    4. b.4.

      \(p \le 0\) and \(\tilde{u}(p) \ge p / p_{min}\Longleftrightarrow p_{min} \le - 1/g^- \, (< 0)\); two further subcases arise:

      1. b.4.1.

        \(- 1/g^- \le p \le 0\Longleftrightarrow \tilde{u}(p) \le 1\Longrightarrow u^*(p) = \tilde{u}(p)\Longrightarrow \)

        $$\begin{aligned} z(p) = \big ( {-}g^- f( - 1 / g^- ) - c g^- \big ) p \end{aligned}$$
        (35)
      2. b.4.2.

        \(p_{min} \le p \le -1/g^- \, (< 0)\Longleftrightarrow \tilde{u}(p) \ge 1\Longrightarrow u^*(p) = 1\Longrightarrow \) (15).

      All this gives

      $$\begin{aligned} z(p) = \left\{ \begin{array}{l@{\quad }l} f(p) + c &{} \text{ if } \quad p_{min} \le p \le - 1/g^- \\ \big ( - g^- f( - 1 / g^- ) - c g^- \big ) p &{} \text{ if } \quad - 1/g^- \le p \le 0 \end{array}\right. \end{aligned}$$
      (36)

    To summarize, z(p) is the convex function with at most 4 pieces

    $$\begin{aligned} z(p) = \left\{ \begin{array}{l@{\quad }l} f(p) + c &{} \text{ if } \quad p_{min} \le p \le - 1/g^- \\ \big ( - g^- f( - 1 / g^- ) - c g^- \big ) p &{} \text{ if } \quad - 1/g^- \le p \le 0 \\ \big ( g^+ f( 1 / g^+ ) + c g^+ \big ) p &{} \text{ if } \quad 0 \le p \le 1 / g^+ \\ f(p) + c &{} \text{ if } \quad 1 / g^+ \le p \le p_{max} \end{array}\right. \end{aligned}$$
    (37)

    Under condition b.1, the two rightmost pieces are substituted with the linear piece (17) \((f( p_{max} ) / p_{max} + c / p_{max}) p\) for \(0 \le p \le p_{max}\) and/or, under condition b.3, the two leftmost pieces are substituted with the linear piece (14) \((f( p_{min} ) / p_{min} + c / p_{min}) p\) for \(p_{min} \le p \le 0\), yielding a 3- or 2-piecewise convex function (piecewise-linear in the latter case as in (34)). \(\square \)

Example 7

We can extend the rational exponent case of §2.1. For instance, if \(k = 4\) (even case), \(h=3\), \(a=3\), \(c=1\), \(p_{min} = -2\), and \(p_{max} = 2\), one has

$$\begin{aligned} g^{\pm } = \left( \frac{1}{3} \frac{3}{1} \right) ^{\frac{3}{4}} = 1 \qquad \text{ and } \text{ then }\qquad z(p) = \left\{ \begin{array}{l@{\quad }l} 3p^{4/3} + 1 &{} \text{ if } \quad -2 \le p \le -1 \\ -4 p &{} \text{ if } \quad -1 \le p \le 0 \\ 4 p&{} \text{ if } \quad 0 \le p \le 1 \\ 3p^{4/3} + 1 &{} \text{ if } \quad 1 \le p \le 2 \end{array}\right. . \end{aligned}$$

We now prove that also (32) can be reformulated as a compact NLP, thus extending the result of Theorem 1 and the \(\mathrm{AP}^2\mathrm{R}\) technique to the case \(p_{min} < 0\).

Theorem 2

For z(p) defined in (32) and

$$\begin{aligned} \bar{z}(p) = \left\{ \begin{array}{ll} \min _{u^+ , u^- , q^+ , q^-} &{} h( u^+ , u^- , q^+ , q^- ) \\ &{} - p_{int}^+ u^+ \le q^+ \le ( p_{max} - p_{int}^+ ) u^+ \\ &{} ( p_{min} - p_{int}^- ) u^- \le q^- \le - p_{int}^- u^- \\ &{} p = p^+_{int} u^+ + q^+ + p^-_{int} u^- + q^- \\ &{} u^+ + u^- \le 1,\quad u^+ \in [0, 1],\quad u^- \in [0, 1] \end{array}\right. , \end{aligned}$$
(38)

where

$$\begin{aligned} h( u^+ , u^- , q^+ , q^- )= & {} u^+ z^+_1( p_{int}^+ ) + z_2( q^+ + p^+_{int} ) - z^+_1( p^+_{int} ) + u^- z^-_1( p_{int}^- ) \nonumber \\&+\, z_2( q^- + p^-_{int} ) - z^-_1( p^-_{int} ), \end{aligned}$$

we have \(z(p) = \bar{z}(p)\) for all \(p \in [p_{min}, p_{max}]\).

Proof

As in Theorem 1, the first step is to bring (32) in the form (21). Here \(k = 4\), and using a slightly nonstandard numbering (to better highlight the fundamental symmetry of the function) we have \(\alpha _{-2} = p_{min}\), \(\alpha _{-1} = p^-_{int}\), \(\alpha _0 = 0\), \(\alpha _1 = p^+_{int}\), \(\alpha _2 = p_{max}\), \(z_{-2} = z_2\), \(z_{-1} = z^-_1\), \(z_1 = z^+_1\). Applying (21) to (32) gives

$$\begin{aligned} z(p) = \left\{ \begin{array}{ll} \min _{p_{-2},p_{-1},p_1,p_2} &{} z_2( p_{-2} + p_{min} ) + z^-_1( p_{-1} + p^-_{int} ) - z^-_1( p^-_{int} ) +\\ &{} z^+_1( p_1 ) + z_2( p_2 + p^+_{int} ) - z( p^+_{int} )\\ &{} 0 \le p_{-2} \le p^-_{int} - p_{min},\quad 0 \le p_{-1} \le - p^-_{int} \\ &{} 0 \le p_1 \le p^+_{int},\quad 0 \le p_2 \le p_{max} - p^+_{int} \\ &{} p = p_{min} + p_{-2} + p_{-1} + p_1 + p_2 \end{array}\right. \end{aligned}$$
(39)

(remember that \(z^+_1( 0 ) = 0\)), and we want to prove that z(p) given in (39) is equivalent to \(\bar{z}(p)\) given in (38) for all \(p \in [p_{min}, p_{max}]\). To do that, we start by identifying

$$\begin{aligned} p_{-2} + p_{min} = q^- + p^-_{int} ,\quad p_{-1} = p^-_{int} ( u^- - 1 ) ,\quad p_1 = p^+_{int} u^+ ,\quad p_2 = q^+ \end{aligned}$$

to recover the objective function and most of the constraints in (38), as some simple but somewhat tedious algebra shows. Then, the general result about (21) can be applied to the optimal solution \((p^*_{-2}, p^*_{-1}, p^*_1, p^*_2)\) (or, equivalently, \((\hat{q}^-,\hat{u}^-,\hat{u}^+,\hat{q}^+)\)) of (23) for any fixed p, yielding

p

\(p^*_{-2}\)

\(p^*_{-1}\)

\(p^*_1\)

\(p^*_2\)

\(\hat{q}^-\)

\(\hat{u}^-\)

\(\hat{u}^+\)

\(\hat{q}^+\)

\({[}p_{min}, p^-_{int}]\)

\(\ge 0\)

0

0

0

\(\le 0\)

1

0

0

\({[}p^-_{int}, 0]\)

\(p^-_{int} - p_{min}\)

\(\ge 0\)

0

0

0

\(\in [0, 1]\)

0

0

\({[}0, p^+_{int}]\)

\(p^-_{int} - p_{min}\)

\(- p^-_{int}\)

\(\ge 0\)

0

0

0

\(\in [0, 1]\)

0

\({[}p^+_{int}, p_{max}]\)

\(p^-_{int} - p_{min}\)

\(- p^-_{int}\)

\(p^+_{int}\)

\(\ge 0\)

0

0

1

\(\ge 0\)

This shows that the constraints

$$\begin{aligned}&- p_{int}^+ u^+ \le q^+ \le ( p_{max} - p_{int}^+ ) u^+ ,\quad ( p_{min} - p_{int}^- ) u^- \le q^- \le - p_{int}^- u^- ,\\&u^- + u^+ \le 1 \end{aligned}$$

are satisfied by \((\hat{q}^-,\hat{u}^-,\hat{u}^+,\hat{q}^+)\) for each value of p. The issue is that \(- p_{int}^+ u^+ \le q^+\) is weaker than \(0 \le q^+\) and \(q^- \le - p_{int}^- u^-\) is weaker than \(q^- \le 0\) (\(p_{int}^- \le 0 \le p_{int}^+\)). However, reasoning as in Theorem 1 one easily shows that relaxing the constraints in this way does not change the optimal solution to (39). \(\square \)

Once again, the choice of (38) is motivated by the fact that, imposing integrality constraints \(u^+ \in \{0, 1\}\), \(u^- \in \{0, 1\}\) and with the identification \(u = u^+ + u^-\), one obtains a reformulation of the original MINLP whose continuous relaxation is equivalent to PR if \(\mathcal {O}\) does not contain constraints linking the u variables, and weaker otherwise. This formulation has twice the number of continuous and binary variables than the ordinary formulation (counting the semi-continuous variables only), but possibly provides (much) stronger bounds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frangioni, A., Furini, F. & Gentile, C. Approximated perspective relaxations: a project and lift approach. Comput Optim Appl 63, 705–735 (2016). https://doi.org/10.1007/s10589-015-9787-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9787-8

Keywords

Mathematics Subject Classification