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Abstract

This article describes a new Riemannian conjugate gradient method and presents a
global convergence analysis. The existing Fletcher–Reeves-type Riemannian conjugate
gradient method is guaranteed to be globally convergent if it is implemented with the
strong Wolfe conditions. On the other hand, the Dai–Yuan-type Euclidean conjugate gra-
dient method generates globally convergent sequences under the weak Wolfe conditions.
This article deals with a generalization of Dai–Yuan’s Euclidean algorithm to a Rie-
mannian algorithm that requires only the weak Wolfe conditions. The global convergence
property of the proposed method is proved by means of the scaled vector transport associ-
ated with the differentiated retraction. The results of numerical experiments demonstrate
the effectiveness of the proposed algorithm.

Keywords: Riemannian optimization; Conjugate gradient method; Global convergence;
Weak Wolfe conditions; Scaled vector transport

1 Introduction

The Euclidean non-linear conjugate gradient method [8] for minimizing a non-linear objective
function f : R

n → R without any constraints is a generalization of the linear conjugate
gradient method proposed by Hestenes and Stiefel [6]. The steepest descent method, which
is the simplest iterative optimization technique, does not need the Hessian of the objective
function, but generally suffers from slow convergence. Newton’s method has a property of
locally quadratic convergence, but this does not extend to global convergence. Additionally,
we need to compute the Hessian of the objective function at each step in Newton’s method.
On the other hand, the conjugate gradient method ensures global convergence and is much
faster than the steepest descent method. Furthermore, it does not need the Hessian of the
objective function. Therefore, the conjugate gradient method is one of the most important
optimization methods, and has been intensively researched.

The non-linear conjugate gradient method in Euclidean space R
n is characterized by its

computation of search directions. The search direction ηk at the current iterate xk ∈ R
n is

computed by
ηk = −∇f(xk) + βkηk−1, k ≥ 0, (1)
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where β0 = 0 and βk is a parameter that determines the property of the conjugate gradient
method. There are various choices of βk, and a good choice leads to better convergence. As
with other line-search-based optimization methods, once a search direction is computed, the
next iterate xk+1 is computed by

xk+1 = xk + αkηk, (2)

where the step size αk > 0 is computed such that αk approximately satisfies

f(xk + αkηk) ≈ min
α>0

{f(xk + αηk)}.

A frequently used rule for computing the step size is the Wolfe rule. Under the Wolfe rule,
αk at the k-th iterate is computed such that αk satisfies the Wolfe conditions

f(xk + αkηk) ≤ f(xk) + c1αk∇f(xk)
T ηk, (3)

∇f(xk + αkηk)
T ηk ≥ c2∇f(xk)

T ηk (4)

for predetermined constants c1 and c2 with 0 < c1 < c2 < 1. In practice, c1 and c2 are often
taken so as to satisfy 0 < c1 < c2 < 1/2 in the conjugate gradient method. To avoid confusion
with the strong Wolfe conditions (in which the inequality (4) is replaced by a stricter condition
|∇f(xk + αkηk)

T ηk| ≤ c2|∇f(xk)
T ηk|), we refer to the Wolfe conditions (3) and (4) as the

weak Wolfe conditions.
We are interested in how to choose a good βk in (1). A well-known choice proposed by

Fletcher and Reeves [5] is

βFR
k =

∇f(xk)
T∇f(xk)

∇f(xk−1)T∇f(xk−1)
.

If the step sizes are computed so as to satisfy the strong Wolfe conditions, the conjugate
gradient method with βFR

k has global convergence. In [2], Dai and Yuan proposed the following
refinement of βFR

k :

βDY
k =

∇f(xk)
T∇f(xk)

ηTk−1yk
, yk = ∇f(xk)−∇f(xk−1). (5)

An advantage of βDY
k is that it ensures the conjugate gradient method is globally convergent

when implemented with only the weak Wolfe conditions. There is no longer a need to assume
that each step size satisfies the strong Wolfe conditions.

Beyond unconstrained optimization methods in Euclidean space, the idea of Riemannian
optimization, or optimization on Riemannian manifolds, has recently been developed [1, 3].
Unconstrained optimization methods, such as the steepest descent method and Newton’s
method, have been generalized to Riemannian manifolds. The conjugate gradient method
has been generalized to Riemannian manifolds to some extent, but remains in the develop-
mental stage. In [1], Absil, Mahony, and Sepulchre introduced the notion of a vector transport
to implement a Riemannian conjugate gradient method. By means of this vector transport,
Ring and Wirth performed a global convergence analysis of the Fletcher–Reeves-type Rie-
mannian conjugate gradient method under the assumption that the vector transport as the
differentiated retraction does not increase the norm of the search direction vector [9]. In [10],
Sato and Iwai introduced the notion of a scaled vector transport. This allowed them to de-
velop an improved method, with a global convergence property that could be proved without
the assumption made in [9].
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The purpose of this article is to propose a new choice of βk for the Riemannian conjugate
gradient method based on Dai–Yuan’s βDY

k in the Euclidean conjugate gradient method. We
will also prove the global convergence property of the proposed algorithm under the weak
Wolfe conditions. Furthermore, we perform some numerical experiments to demonstrate
that the proposed Dai–Yuan-type Riemannian conjugate gradient method is preferable to the
existing Fletcher–Reeves-type method developed in [10], and show that a step size satisfying
the weak Wolfe conditions is easier to find than one that satisfies the strong Wolfe conditions.

This article is organized as follows. In Section 2, we introduce several geometric objects
necessary for Riemannian optimization. We also define a Riemannian version of the weak
Wolfe conditions, which are important in our algorithm. In Section 3, we review the Dai–
Yuan-type Euclidean conjugate gradient method, and discuss how to generalize βDY

k to βk on
a Riemannian manifold. We take an approach based on another expression of (5), and propose
a new algorithm. Section 4 provides a global convergence analysis of the present algorithm.
This is analogous to a discussion in [2]. The notion of a scaled vector transport introduced
in [10] plays an important role in our analysis. In Section 5, we describe some numerical
experiments that are intended to evaluate the performance of the proposed algorithm. The
results show that the proposed Dai–Yuan-type algorithm is preferable to the Fletcher–Reeves-
type algorithm. Our concluding remarks are presented in Section 6.

2 General Riemannian optimization and Riemannian conju-

gate gradient method

In this section, we briefly review Riemannian optimization, especially the Riemannian conju-
gate gradient method. Our problem is as follows.

Problem 2.1.

minimize f(x),

subject to x ∈ M,

where M is a Riemannian manifold endowed with a Riemannian metric 〈·, ·〉 and the norm of
a tangent vector ξ ∈ TxM is defined to be ‖ξ‖x =

√

〈ξ, ξ〉x, and where f is a smooth objective
function. Note that 〈·, ·〉x denotes the inner product on TxM .

In Riemannian optimization, we have to replace several quantities used in Euclidean opti-
mization with appropriate quantities on the Riemannian manifold (M, 〈·, ·〉) in question. For
example, the search direction ηk at the current point xk ∈ M must be a tangent vector to M
at xk. In iterative optimization methods, we perform a line search on appropriate curves on
M . Such a curve should emanate from xk in the direction of ηk, and can be defined by means
of a retraction. A retraction is defined as follows [1].

Definition 2.1. Let M and TM be a manifold and the tangent bundle of M , respectively.
Let R : TM → M be a smooth map and Rx be the restriction of R to TxM . R is called a
retraction on M if it has the following properties.

1. Rx(0x) = x, where 0x denotes the zero element of TxM .

2. With the canonical identification T0xTxM ≃ TxM , Rx satisfies

DRx(0x) = idTxM ,
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where DRx(0x) denotes the derivative of Rx at 0x, and idTxM is the identity map on
TxM .

Using a retraction, the updating formula for line-search-based Riemannian optimization meth-
ods can be written as

xk+1 = Rxk
(αkηk), (6)

where the step size αk is computed so as to satisfy a certain condition. Note that (6) replaces
(2). Throughout this article, we consider the weak Wolfe conditions

f (Rxk
(αkηk)) ≤ f(xk) + c1αk〈grad f(xk), ηk〉xk

, (7)

〈grad f (Rxk
(αkηk)) ,DRxk

(αkηk) [ηk]〉Rxk
(αkηk) ≥ c2〈grad f(xk), ηk〉xk

, (8)

where 0 < c1 < c2 < 1 [9, 10]. Note that, on a general Riemannian manifold M , grad f is
no longer the Euclidean gradient. In fact, grad f is a vector field on M , and depends on the
Riemannian metric.

In generalizing the Euclidean conjugate gradient method to that on a manifold M , the
right-hand side of (1) cannot be computed, since grad f(xk) ∈ Txk

M and ηk−1 ∈ Txk−1
M ;

that is, the two terms on the right-hand side of (1) belong to different tangent spaces.
In [1], the notion of a vector transport was introduced to transport a tangent vector to

another tangent space.

Definition 2.2. A vector transport T on a manifold M is a smooth map

TM ⊕ TM → TM : (η, ξ) 7→ Tη(ξ) ∈ TM

satisfying the following properties for all x ∈ M , where ⊕ is the Whitney sum [1], that is,
TM ⊕ TM = {(η, ξ) | η, ξ ∈ TxM,x ∈ M}.

1. There exists a retraction R, called the retraction associated with T , such that

π (Tη(ξ)) = Rx (η) , η, ξ ∈ TxM,

where π (Tη(ξ)) denotes the foot of the tangent vector Tη(ξ),

2. T0x(ξ) = ξ for all ξ ∈ TxM ,

3. Tη(aξ + bζ) = aTη(ξ) + bTη(ζ) for all a, b ∈ R, η, ξ, ζ ∈ TxM .

We can generalize (1) using a vector transport T on M as

ηk = − grad f(xk) + βkTαk−1ηk−1
(ηk−1), k ≥ 0, (9)

or equivalently,
ηk = − grad f(xk) + βkT (k−1)

αk−1ηk−1
(ηk−1), k ≥ 0, (10)

where T (k) := c(k)T and c(k) is a positive number. Thus, we have replaced βk with βkc
(k) in

(9) to obtain (10). However, the latter expression (10) is more useful in our discussion. We
will propose a new choice of βk in Section 3.

A reasonable choice of a vector transport is the differentiated retraction T R defined by

T R
η (ξ) := DRx(η)[ξ], x ∈ M, η, ξ ∈ TxM. (11)
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Note that the second condition (8) of the weak Wolfe conditions can be rewritten using T R

as
〈grad f (Rxk

(αkηk)) ,T R
αkηk

(ηk)〉Rx
k
(αkηk) ≥ c2〈grad f(xk), ηk〉xk

. (12)

Furthermore, the scaled vector transport T 0 associated with T R [10], which is defined by

T 0
η (ξ) =

‖ξ‖x
‖T R

η (ξ)‖Rx(η)
T R
η (ξ), x ∈ M, η, ξ ∈ TxM, (13)

is important for analyzing the global convergence of our new algorithm. Note that T 0 is not
a vector transport, as it does not satisfy the third condition of Def. 2.2. However, T 0 has the
important property that

‖T 0
η (ξ)‖Rx(η) = ‖ξ‖x, η, ξ ∈ TxM.

3 Dai–Yuan-type Euclidean conjugate gradient method and

its Riemannian generalization

3.1 Dai–Yuan-type Euclidean conjugate gradient method

The conjugate gradient method on R
n with βDY

k defined by (5) was proposed by Dai and
Yuan [2]. This method is globally convergent under the assumption that each step size αk

satisfies the weak Wolfe conditions (3) and (4). Since the Fletcher–Reeves-type conjugate
gradient method must be implemented with the strong Wolfe conditions, βDY

k is an improved
version of βFR

k . We wish to develop a good analogy of βDY
k for Riemannian manifolds.

Note that, in Euclidean space, we can show the equality

βDY
k =

∇f(xk)
T ηk

∇f(xk−1)T ηk−1
(14)

using Eq. (1) as

βDY
k =

βDY
k (∇f(xk)− yk)

T ηk−1

∇f(xk−1)T ηk−1
=

∇f(xk)
T (−∇f(xk) + βDY

k ηk−1)

∇f(xk−1)T ηk−1

=
∇f(xk)

T ηk
∇f(xk−1)T ηk−1

.

The equivalent expressions (5) and (14) for βDY
k are useful in analyzing the global convergence

of the Dai–Yuan-type algorithm in [2].

3.2 New Riemannian conjugate gradient method based on Euclidean Dai–

Yuan β

Throughout this subsection, we assume that all quantities that appear in the denominator
of a fraction are nonzero. However, this assumption can be removed after we propose a new
algorithm at the end of this section; see Prop. 4.1 for more details. For simplicity, in some of
the following computations, we use the notation

gk = grad f(xk), k ≥ 0.
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We expect a Riemannian analogy of the Dai–Yuan-type Euclidean conjugate gradient
method to have global convergence if the step sizes satisfy the weak Wolfe conditions.

Let T be a general vector transport on M . Assume that T (k) := c(k)T , and use the update
formula (10) at the k-th iteration, where c(k) is a positive number.

Note that grad f(xk) ∈ Txk
M and grad f(xk−1) ∈ Txk−1

M belong to different tan-
gent spaces. There are several possible ways of generalizing the right-hand side of (5),

e.g., ‖gk‖2xk
/〈T (k−1)

αk−1ηk−1
(ηk−1), gk − T (k−1)

αk−1ηk−1
(gk−1)〉xk

or ‖gk‖2xk
/〈ηk−1, (T (k−1)

αk−1ηk−1
)−1(gk) −

gk−1〉xk−1
.

On the other hand, it seems natural to generalize the right-hand side of (14), which is
equivalent to (5) in the Euclidean case, to

βk :=
〈grad f(xk), ηk〉xk

〈grad f(xk−1), ηk−1〉xk−1

. (15)

Note also that Eq. (15), which is an analogy of (14) in the Euclidean case, is helpful in
our global convergence analysis, as we will discuss later. Therefore, we start with Eq. (15)
to generalize the Dai–Yuan βk. We should state that Eq. (15) itself cannot be used in a
conjugate gradient algorithm, since ηk in the right-hand side of (15) is computed using βk
itself, as in (10). We wish to derive an expression for βk that does not contain ηk. To this
end, we obtain from (10) and (15) that

βk =
〈gk,−gk + βkT (k−1)

αk−1ηk−1
(ηk−1)〉xk

〈gk−1, ηk−1〉xk−1

=
−‖gk‖2xk

+ βk〈gk,T (k−1)
αk−1ηk−1

(ηk−1)〉xk

〈gk−1, ηk−1〉xk−1

.

It follows that

βk =
‖grad f(xk)‖2xk

〈grad f(xk),T (k−1)
αk−1ηk−1

(ηk−1)〉xk
− 〈grad f(xk−1), ηk−1〉xk−1

. (16)

We can further show that this βk in fact satisfies

βk =
‖grad f(xk)‖2xk

〈T (k−1)
αk−1ηk−1

(ηk−1), yk〉xk

, (17)

with yk ∈ Txk
M defined by

yk = grad f(xk)

− 〈grad f(xk−1), ηk−1〉xk−1

〈T (k−1)
αk−1ηk−1

(grad f(xk−1)),T (k−1)
αk−1ηk−1

(ηk−1)〉xk

T (k−1)
αk−1ηk−1

(grad f(xk−1)). (18)

This is because, from (18), it follows that

〈T (k)
αkηk

(ηk), yk+1〉xk+1

=

〈

T (k)
αkηk

(ηk), gk+1 −
〈gk, ηk〉xk

〈T (k)
αkηk(gk),T

(k)
αkηk(ηk)〉xk+1

T (k)
αkηk

(gk)

〉

xk+1
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=〈T (k)
αkηk

(ηk), gk+1〉xk+1
− 〈gk, ηk〉xk

,

which implies that the denominators in the right-hand sides of (16) and (17) are the same.
Equations (17) and (18) would appear to be a natural generalization of (5). However, yk,

and hence the right-hand side of (17), are not always guaranteed to be well defined, since we
cannot ensure that

〈T (k)
αkηk

(grad f(xk)),T (k)
αkηk

(ηk)〉xk+1
6= 0 (19)

for all k ≥ 0. On the other hand, as discussed in Section 4, the right-hand side of Eq. (16) is
well defined when we use step sizes satisfying the weak Wolfe conditions (7) and (8). Defining
βk as (16) has an advantage over (17), because (16) is valid without assumption (19).

Therefore, our strategy is to define a new βk using (16), rather than (17). Furthermore,
similar to the Fletcher–Reeves-type Riemannian conjugate gradient method proposed in [10],
we use the scaled vector transport T 0 associated with the differentiated retraction T R only
when T R increases the norm of the search vector. We now propose a new algorithm as
Algorithm 3.1.

Algorithm 3.1 A scaled Dai–Yuan-type Riemannian conjugate gradient method for Problem
2.1 on a Riemannian manifold M
1: Choose an initial point x0 ∈ M .
2: Set η0 = − grad f(x0).
3: for k = 0, 1, 2, . . . do
4: Compute the step size αk > 0 satisfying the weak Wolfe conditions (7) and (8) with

0 < c1 < c2 < 1. Set
xk+1 = Rxk

(αkηk) ,

where R is a retraction on M .
5: Set

βk+1 =
‖grad f(xk+1)‖2xk+1

〈grad f(xk+1),T (k)
αkηk(ηk)〉xk+1

− 〈grad f(xk), ηk〉xk

, (20)

ηk+1 = − grad f(xk+1) + βk+1T (k)
αkηk

(ηk), (21)

where T (k) is defined by

T (k)
αkηk

(ηk) =

{

T R
αkηk

(ηk), if ‖T R
αkηk

(ηk)‖xk+1
≤ ‖ηk‖xk

,

T 0
αkηk

(ηk), otherwise,
(22)

and where T R and T 0 are the differentiated retraction and the associated scaled vector
transport defined by (11) and (13), respectively.

6: end for

Note that (22) is well defined because, when we choose T 0 at the k-th iteration, it holds
that ‖T R

αkηk
(ηk)‖xk+1

> ‖ηk‖xk
≥ 0 and the quantity ‖ηk‖xk

/‖T R
αkηk

(ηk)‖xk+1
is well defined.

Furthermore, (22) can also be written as

T (k)
αkηk

(ηk) = c(k)T R
αkηk

(ηk), c(k) = min

{

1,
‖ηk‖xk

‖T R
αkηk

(ηk)‖xk+1

}

. (23)
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Thus, we obtain the important inequality [10]

‖T (k)
αkηk

(ηk)‖xk+1
≤ ‖ηk‖xk

, (24)

which is essential in the global convergence analysis of our new algorithm.

4 Global convergence analysis of the proposed new algorithm

In this section, we prove the global convergence property of the proposed algorithm. We first
describe our assumption about the objective function f .

Assumption 4.1. The objective function f is bounded below and of C1-class, and there exists
a Lipschitzian constant L > 0 such that

|D(f ◦Rx)(tη)[η] −D(f ◦Rx)(0)[η]| ≤ Lt, η ∈ TxM, ‖η‖x = 1, x ∈ M, t ≥ 0.

Examples of f and the conditions under which this assumption holds are given in [10].
We review a Riemannian analogy of Zoutendijk’s theorem. See [9, 10] for more details.

Theorem 4.1. Suppose that a sequence {xk} on a Riemannian manifold M is generated by
a general line-search-based optimization algorithm; that is, by Eq. (6) with a retraction R
on M . Suppose also that each search direction ηk satisfies 〈grad f(xk), ηk〉xk

< 0 and that
αk satisfies the weak Wolfe conditions (7) and (8). If Assumption 4.1 is satisfied, then the
following series converges:

∞
∑

k=0

cos2 θk‖grad f(xk)‖2xk
< ∞,

where cos θk is defined by

cos θk = − 〈grad f(xk), ηk〉xk

‖grad f(xk)‖xk
‖ηk‖xk

.

To show that βk in Algorithm 3.1, and hence the algorithm itself, is well defined, we prove
that the search direction ηk is a descent direction; that is, 〈gk, ηk〉xk

< 0. Note that in [2], the
definition (5) of βDY

k , which is a Euclidean analogy of the expression in (17), is fully used to
prove that the Euclidean Dai–Yuan-type conjugate gradient method generates descent search
directions. In general, however, we cannot use (17), as it is not well defined. Therefore, we
can only use (16). Note that if 〈gk, ηk〉xk

6= 0 for all k ≥ 0, (16) is equivalent to (15). In the
proof of the next proposition, we use a different approach from that in [2].

Proposition 4.1. If grad f(xk) 6= 0 for all k ≥ 0, then Algorithm 3.1 is well defined and the
following two inequalities hold:

〈grad f(xk), ηk〉xk
< 0, (25)

〈grad f(xk), ηk〉xk
< 〈grad f(xk+1),T (k)

αkηk
(ηk)〉xk+1

. (26)
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Proof. The proof is by induction. For k = 0, the first inequality (25) follows directly from

η0 = −g0. We shall prove (26) for k = 0. If 〈g1,T (0)
α0η0(η0)〉x1

≥ 0, it immediately follows that

〈g1,T (0)
α0η0

(η0)〉x1
≥ 0 > 〈g0, η0〉x0

. (27)

If 〈g1,T (0)
α0η0(η0)〉x1

< 0, and hence 〈g1,T R
α0η0

(η0)〉x1
< 0, then the second condition (8) of the

weak Wolfe conditions with 0 < c2 < 1 and (23) gives

〈g1,T (0)
α0η0

(η0)〉x1
=min

{

1,
‖η0‖x0

‖T R
α0η0

(η0)‖x1

}

〈g1,T R
α0η0

(η0)〉x1

≥〈g1,T R
α0η0

(η0)〉x1
≥ c2〈g0, η0〉x0

> 〈g0, η0〉x0
, (28)

where we have used the fact that (8) is equivalent to (12). Thus, (26) has been proved for
k = 0, and β1 is well defined by (20).

Next, suppose that βk is well defined by the right-hand side of (16), and that both in-
equalities (25) and (26) hold for some k. Note that βk+1 is well defined from the assumption
in (26) for k. The left-hand side of (25) for k + 1 can then be calculated as

〈gk+1, ηk+1〉xk+1
= 〈gk+1,−gk+1 + βk+1T (k)

αkηk
(ηk)〉xk+1

=− ‖gk+1‖2xk+1
+

‖gk+1‖2xk+1

〈gk+1,T (k)
αkηk(ηk)〉xk+1

− 〈gk, ηk〉xk

〈gk+1,T (k)
αkηk

(ηk)〉xk+1

=
‖gk+1‖2xk+1

〈gk, ηk〉xk

〈gk+1,T (k)
αkηk(ηk)〉xk+1

− 〈gk, ηk〉xk

< 0,

where we have used inequalities (25) and (26) for k. This means that (25) holds for k+1. It
then follows from a similar argument to (27) and (28) that

〈gk+1, ηk+1〉xk+1
< 〈gk+2,T (k+1)

αk+1ηk+1
(ηk+1)〉xk+2

.

This completes the proof.

The following corollary immediately follows from (26).

Corollary 4.1. In Algorithm 3.1, if grad f(xk) 6= 0 for all k ≥ 0, then we have βk > 0 for
all k ≥ 1.

We now proceed to our main theorem. The proof is performed in a manner analogous to
the Euclidean version in [2] with the aid of a scaled vector transport, as in [10].

Theorem 4.2. Let {xk} be a sequence generated by Algorithm 3.1. If Assumption 4.1 is
satisfied, then we have

lim inf
k→∞

‖grad f(xk)‖xk
= 0. (29)

Proof. We first note that, from Prop. 4.1, all the assumptions in Thm. 4.1 are satisfied.
Therefore, we have

∞
∑

k=0

〈gk, ηk〉2xk

‖ηk‖2xk

< ∞. (30)
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If gk0 = 0 for some k0, then βk0 = 0, followed by ηk0 = 0 and xk0+1 = Rxk0
(0) = xk0 .

Thus, it is sufficient to prove (29) only when gk 6= 0 for all k ≥ 0. In such a case, it follows
from (21) that

ηk+1 + gk+1 = βk+1T (k)
αkηk

(ηk).

Taking the norms and squaring, we obtain

‖ηk+1‖2xk+1
= β2

k+1‖T (k)
αkηk

(ηk)‖2xk+1
− 2〈gk+1, ηk+1〉xk+1

− ‖gk+1‖2xk+1
.

This equality, together with (25), yields

‖ηk+1‖2xk+1

〈gk+1, ηk+1〉2xk+1

=
‖T (k)

αkηk(ηk)‖2xk+1

〈gk, ηk〉2xk

− 2

〈gk+1, ηk+1〉xk+1

−
‖gk+1‖2xk+1

〈gk+1, ηk+1〉2xk+1

=
‖T (k)

αkηk(ηk)‖2xk+1

〈gk, ηk〉2xk

−
(

1

‖gk+1‖xk+1

+
‖gk+1‖xk+1

〈gk+1, ηk+1〉xk+1

)2

+
1

‖gk+1‖2xk+1

≤
‖ηk‖2xk

〈gk, ηk〉2xk

+
1

‖gk+1‖2xk+1

,

where we have used the inequality (24) and the fact that βk+1 is equal to the right-hand side
of (15) for k + 1, since 〈gk, ηk〉xk

6= 0 from (25). We thus arrive at the relation

‖ηk‖2xk

〈gk, ηk〉2xk

≤
k

∑

i=1

1

‖gi‖2xi

+
‖η0‖2x0

〈g0, η0〉2x0

=

k
∑

i=0

1

‖gi‖2xi

. (31)

We are now in a position to prove (29) by contradiction. Given that we are now assuming
grad f(xk) 6= 0 for all k ≥ 0, if (29) does not hold, then there exists a constant C > 0 such
that

‖gk‖xk
≥ C, k ≥ 0. (32)

From (31) and (32), we obtain
‖ηk‖2xk

〈gk, ηk〉2xk

≤ k + 1

C2
.

This leads to
N
∑

k=0

〈gk, ηk〉2xk

‖ηk‖2xk

≥ C2
N
∑

k=0

1

k + 1
→ ∞, N → ∞,

which contradicts (30). This proves the theorem.

5 Numerical Experiments

In this section, we describe some numerical experiments designed to show the effectiveness of
the proposed algorithm. The experiments are carried out by using MATLAB R2014b on a
PC with Intel Core i7-4790 3.60 GHz CPU, 16 GB of RAM memory and Windows 8.1 Pro
64-bit operating system. In the experiments, we determine that a sequence converges to an
optimal solution if ‖grad f(xk)‖ < ε for a predetermined tolerance ε > 0. We refer to βk in
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Algorithm 3.1 as βDY
k , and to the Fletcher–Reeves-type βk, which is discussed in [10], as βFR

k ,
that is,

βDY
k+1 =

‖gk+1‖2xk+1

〈gk+1,T (k)
αkηk(ηk)〉xk+1

− 〈gk, ηk〉xk

, βFR
k+1 =

‖gk+1‖2xk+1

‖gk‖2xk

.

5.1 Line search algorithms

Let φk denote a one-variable function defined by φk(α) = f(Rxk
(αηk)), where ηk is a search

direction at xk ∈ M . Then, the Wolfe conditions (7) and (8) can be rewritten as

φk(αk) ≤ φk(0) + c1φ
′

k(0), (33)

φ′

k(αk) ≥ c2φ
′

k(0). (34)

In terms of finding some αk that satisfies (33) and (34), the problem setting is the same as
that in Euclidean optimization problems. Therefore, we can use existing algorithms such as
those in [7] and [8]. Note that (34) is replaced by

|φ′

k(αk)| ≤ c2|φ′

k(0)|

in the strong Wolfe conditions.
In the following numerical experiments, unless otherwise noted, we set c1 = 10−4 and

c2 = 0.1 and use line search algorithms for the weak and strong Wolfe conditions based on [7]
and [8], respectively. See Figure 1 in [7] and Algorithms 3.5 and 3.6 in [8] for further details.

In the algorithm in [7], we must interpolate a lower bound tL and an upper bound tR
of an appropriate step size to find tinterpol. Furthermore, when no upper bound is available,
we have to extrapolate the lower bound tL to find textrapol. To this end, we use the simple
formula

tinterpol :=
tL + tR

2
, textrapol := 2tL.

In Algorithm 3.5 in [8], we have to extrapolate an estimated step size α(i) to determine a
value α(i+1), where the superscript is the inner iteration number of Algorithm 3.5 in [8]. We
use the formula introduced in [8]:

α := α(i) − (α(i) − α(i−1))
φ′(α(i)) + d2 − d1

φ′(α(i))− φ′(α(i−1)) + 2d2
, (35)

with

d1 =φ′(α(i−1)) + φ′(α(i))− 3
φ(α(i−1))− φ(α(i))

α(i−1) − α(i)
,

d2 =sign(α(i) − α(i−1))
√

d21 − φ′(α(i−1))φ′(α(i)),

where sign is the sign function. This formula is based on the cubic interpolation of α(i−1) and
α(i). Note that the α obtained in (35) may be too small or too large. To safeguard this, we
use a rule introduced in [4], that is, we choose α(i+1) from the interval [2α(i) − α(i−1), α(i) +
9(α(i) − α(i−1))]. Together with Eq. (35), this rule gives the formula

α(i+1) := min{max{α, 2α(i) − α(i−1)}, α(i) + 9(α(i) − α(i−1))}. (36)

We implement Algorithms 3.5 and 3.6 in [8] using (36).
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5.2 Rayleigh quotient minimization on the sphere

Let A be an n × n symmetric matrix. Throughout this section, we consider the problem of
minimizing

f(x) = xTAx

on the unit sphere Sn−1 = {x ∈ R
n |xTx = 1} endowed with the natural Riemannian metric

〈ξ, η〉x = ξT η, ξ, η ∈ TxS
n−1, x ∈ Sn−1,

in which case the gradient of the objective function f is written as

grad f(x) = 2(In − xxT )Ax.

For simplicity, we use a retraction R defined by

Rx(ξ) =
x+ ξ

‖x+ ξ‖ , ξ ∈ TxS
n−1, x ∈ Sn−1,

where ‖·‖ denotes the Euclidean norm, and use the associated differentiated retraction [1]

Tη(ξ) = DRx(η)[ξ]

=
1

‖x+ η‖

(

In − 1

‖x+ η‖2 (x+ η)(x+ η)T
)

ξ, η, ξ ∈ TxS
n−1, x ∈ Sn−1.

For means of reproducibility, we first set A = diag(1, 2, . . . , n), x0 = 1n/
√
n, and ε = 10−5

without using random values, where 1n is an n-dimensional vector whose elements are all
equal to 1. We then apply conjugate gradient methods with βFR and βDY under the weak
and strongWolfe conditions, and with n = 100 and n = 500. Figure 1 (for n = 100) and Fig. 2
(for n = 500) show the results of the experiments. In Fig. 2, the graph corresponding to the
method with βFR and the weak Wolfe conditions implies that this method is much slower than
the others. In fact, with some other initial points, no appropriate step size satisfying the weak
Wolfe conditions can be found for this method. For example, with x0 = (1T35 0T465)

T /
√
35, we

have 〈grad f(xk), ηk〉xk
= 1.2646× 10−4 > 0 at k = 37, which means that the search direction

ηk is not a descent direction for f at xk. In contrast, under Prop. 4.1, the method with βDY

and the weak Wolfe conditions is guaranteed to have the property 〈grad f(xk), ηk〉xk
< 0 for

all k ≥ 0. The number of iterations, function evaluations, and gradient evaluations, as well as
the average computational time (1000 times) required for convergence, are shown in Table 1
(for n = 100) and Table 2 (for n = 500). Note that we have abbreviated the weak and strong
Wolfe conditions as wWolfe and sWolfe, respectively.

Table 1: Comparison of several quantities between different conjugate gradient methods with
n = 100.

P
P
P
P
P
P

Method
Iterations Function Evals. Gradient Evals. Computational time

DY + wWolfe 149 210 206 0.0175
DY + sWolfe 90 288 244 0.0187
FR + wWolfe 318 619 577 0.0429
FR + sWolfe 91 293 258 0.0191
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Figure 1: The sequence of ‖grad f(xk)‖xk
evaluated on the sequence {xk} generated by Al-

gorithm 3.1 with n = 100.

Iteration
0 200 400 600 800 1000

N
or

m
 o

f 
th

e 
gr

ad
ie

nt

10-6

10-4

10-2

100

102

104

DY + wWolfe
DY + sWolfe
FR + wWolfe
FR + sWolfe

Figure 2: The sequence of ‖grad f(xk)‖xk
evaluated on the sequence {xk} generated by Al-

gorithm 3.1 with n = 500.
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Table 2: Comparison of several quantities between different conjugate gradient methods with
n = 500.

P
P
P
P
P
P

Method
Iterations Function Evals. Gradient Evals. Computational time

DY + wWolfe 340 373 367 0.0522
DY + sWolfe 232 657 467 0.0658
FR + wWolfe 960 1902 1757 0.1988
FR + sWolfe 300 723 529 0.0730

These results indicate that we should not use the Fletcher–Reeves-type method with the
weak Wolfe conditions, because it is not always guaranteed to generate a converging sequence.
In Tables 1 and 2, we can observe that “DY + wWolfe” requires the shortest computational
time. In the following, we compare three methods, namely “DY + wWolfe”, “DY + sWolfe”,
and “FR + sWolfe”, using more general 1000 problems.

We next set n = 100, generate 1000 symmetric matrices A and initial points x0 with
randomly chosen elements, and then apply the above three methods. Table 3 shows the
average values of the quantities in Tables 1 and 2 over the 1000 matrices A.

Table 3: Comparison of the averages of several quantities between different conjugate gradient
methods with 1000 randomly chosen matrices A.

P
P
P
P
P
P

Method
Iterations Function Evals. Gradient Evals. Computational time

DY + wWolfe 242.751 538.177 469.628 0.0334
DY + sWolfe 160.270 529.736 410.278 0.0322
FR + sWolfe 201.441 649.900 513.879 0.0390

Even though “DY + wWolfe” requires the most iterations, it generates fewer function
and gradient evaluations per iteration. In our experiments, “DY + sWolfe” had the shortest
average computational time. In fact, however, “DY + sWolfe” was not the fastest method
for all 1000 matrices, as “DY + wWolfe” converged faster with 379 of the 1000 matrices.
Furthermore, we can observe that the Dai–Yuan-type Riemannian conjugate gradient method
is more efficient than the Fletcher–Reeves-type method.

We also perform the same experiments as in Table 3 with other choices of c1 and c2 in the
(strong) Wolfe conditions: (c1, c2) = (10−4, 10−2), (10−4, 0.2), (10−4 , 0.3), (10−4 , 0.4), (0.1, 0.2),
(0.1, 0.3), (0.1, 0.4). The results show that the choice of c1 does not affect the performance
of the proposed method very much, while the choice of c2 can improve or worsen the per-
formance. In fact, in our experiments, the proposed method with (c1, c2) = (0.1, 0.4) was
the fastest. The three methods “DY + wWolfe”, “DY + sWolfe”, and “FR + sWolfe” with
(c1, c2) = (0.1, 0.4) required 0.0255, 0.0310, and 0.0465 seconds (on average) for convergence,
respectively. In this case, “DY + wWolfe” converged faster than “DY + sWolfe” with 842
of the 1000 matrices. Even though a better choice of c1 and c2 can improve conjugate gra-
dient methods, we observe that the Dai–Yuan-type method is always more efficient than the
Fletcher–Reeves-type method.
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6 Concluding Remarks

We have proposed a new Riemannian conjugate gradient method based on the Dai–Yuan-type
Euclidean conjugate gradient algorithm. To generalize βDY

k = ∇f(xk)
T∇f(xk)/η

T
k−1yk in the

Dai–Yuan algorithm, we used another expression βDY
k = ∇f(xk)

T ηk/∇f(xk−1)
T ηk−1 and the

notion of a vector transport. We thus proposed a new βk, and hence a new Riemannian
conjugate gradient method.

We have proved that the proposed algorithm is well defined and that sequences generated
by the algorithm are globally convergent. The notion of a scaled vector transport plays an
essential role in the convergence analysis, that is, property (24) leads to a contradiction with
Zoutendijk’s theorem if we assume that the assertion of Thm. 4.2 is false. One advantage
of our algorithm is that we do not have to search for step sizes satisfying the strong Wolfe
conditions, which are necessary conditions for the existing Fletcher–Reeves-type algorithm,
and need only compute the step sizes with the weak Wolfe conditions.

Through a series of numerical experiments, we demonstrated that the Dai–Yuan-type
method is better than the Fletcher–Reeves-type approach. Implementing the Dai–Yuan-type
method with the weak Wolfe conditions is not always better than that with the strong Wolfe
conditions, but is preferable for many problems. Nevertheless, we can choose which conditions
we use according to the form of the objective function, the size of the problem, and so on.

It is also worth pointing out that the role of the scaled vector transport in Algorithm 3.1
may be imposed on βk. Putting the scaling factor min

{

1, ‖ηk‖xk
/‖T R

αkηk
(ηk)‖xk+1

}

on βk+1,
we can rewrite the computations in Step 5 of Algorithm 3.1 as

c(k) = min

{

1,
‖ηk‖xk

‖T R
αkηk

(ηk)‖xk+1

}

,

β̄k+1 =
c(k)‖grad f(xk+1)‖2xk+1

c(k)〈grad f(xk+1),T R
αkηk

(ηk)〉xk+1
− 〈grad f(xk), ηk〉xk

,

ηk+1 = − grad f(xk+1) + β̄k+1T R
αkηk

(ηk).

Although these formulas stem from the notion of a scaled vector transport, they can be
regarded as if we are not using a scaled vector transport, but are simply applying another
type of βk with a usual vector transport. These may be easier to deal with in the common
framework of the conjugate gradient method discussed in [1].
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[7] C. Lemaréchal, A view of line-searches, in Optimization and Optimal Control,
Springer, 1981, pp. 59–78.

[8] J. Nocedal and S. Wright, Numerical Optimization, Series in Operations Research
and Financial Engineering, Springer, New York, 2006.

[9] W. Ring and B. Wirth, Optimization methods on Riemannian manifolds and their
application to shape space, SIAM J. Optim., 22 (2012), pp. 596–627.

[10] H. Sato and T. Iwai, A new, globally convergent Riemannian conjugate gradient
method, Optimization, 64 (2015), pp. 1011–1031.

16


	1 Introduction
	2 General Riemannian optimization and Riemannian conjugate gradient method
	3 Dai–Yuan-type Euclidean conjugate gradient method and its Riemannian generalization
	3.1 Dai–Yuan-type Euclidean conjugate gradient method
	3.2 New Riemannian conjugate gradient method based on Euclidean Dai–Yuan 

	4 Global convergence analysis of the proposed new algorithm
	5 Numerical Experiments
	5.1 Line search algorithms
	5.2 Rayleigh quotient minimization on the sphere

	6 Concluding Remarks

