Skip to main content

Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Semi-infinite problem (SIPs) are widely used in many control systems for solving complex control problem, such as polymerase chain reaction control system or other real time control system. In this paper, we present a bundle method for solving the nonsmooth convex SIPs, with the aim of working on the basis of “improvement function”, “inexact oracle” and “incomplete knowledge” of the constraints. The proposed algorithm, whenever a new stabilized center is refreshed, requires an evaluation within some accuracy for the value of constraints. Beyond that, by using the incremental technique, it does not require all information about the constraints, but only one component function value and one subgradient needed to be estimated to update the bundle information and generate the search direction. Thus the computational cost is significantly reduced. Global convergence of this method is established based on some mild assumptions. Numerical experiments show that the algorithm is efficient for solving nonsmooth convex SIPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackooij, W.V., Sagastizbal, C.: Constrained bundle methods for upper inexact oracles with application to joint chance constrained energy problems. SIAM J. Optim. 24, 733–765 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhattacharjee, B., Lemonidis, P., Green Jr, W.H., Barton, P.I.: Global solution of semi-infinite programs. Math. Program. 103, 283–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cánovas, M.J., Hantoute, A., Láopez, M.A., Parra, J.: Stability of indices in the KKT conditions and metric regularity in convex semi-infinite optimization. J. Optim. Theory Appl. 139, 485–500 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58, 595–612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Emiel, G., Sagastizábal, C.: Incremental-like bundle methods with application to energy planning. Comput. Optim. Appl. 46, 305–332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fang, S.C., Lin, C.J., Wu, S.-Y.: Solving quadratic semi-infinite programming problems by using relaxed cutting-plane scheme. J. Comput. Appl. Math. 129, 89–104 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fuduli, A., Gaudioso, M., Giallombardo, G.: Minimizing nonconvex nonsmooth functions via cutting planes and proximity control. SIAM J. Optim. 14, 743–756 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fuduli, A., Gaudioso, M., Giallombardo, G., Miglionico, G.: A partially inexact bundle method for convex semi-infinite minmax problems. Commun Nonlinear Sci Numer Simulat 21, 172–180 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gaudioso, M., Giallombardo, G., Miglionico, G.: An incremental method for solving convex finite Min-Max problems. Math. Oper. Res. 31, 173–187 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goberna, M.A., Lápez, M.A.: Linear Semi-infinite Optimization. Wiley, New York (1998)

    Google Scholar 

  11. Hare, W., Sagastizábal, C., Solodov, M.: A proximal bundle method for nonsmooth nonconvex functions with inexact information. Comput. Optim. Appl. doi:10.1007/s10589-015-9762-4

  12. Helmberg, C., Rendl, F.: A spectral bundle method for semi-definite programming. SIAM J. Optim. 10, 673–696 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hettich, R.: An implementation of a discretization method for semi-infinite programming. Math. Program. 34, 354–361 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods and applications. SIAM Rev. 35, 380–429 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hiriart-Urruty, J.B., Lemarechal, C.: Convex analysis and minimization algorithms. Springer, Berlin, Heidelberg (1991)

    MATH  Google Scholar 

  16. Hu, H.: A one-phase algorithm for semi-infinite linear programming. Math. Program. 46, 85–103 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin, P., Ling, C., Shen, H.F.: A smoothing Levenberg-Marquardt algorithm for semi-infinite programming. Comput. Optim. Appl. 60, 675–695 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jongen, HTh, Rückmann, J.-J., Stein, O.: Generalized semi-infinite optimization: a first order optimality condition and examples. Math. Program. 83, 145–158 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Kanzi, N.: Necessary optimality conditions for nonsmooth semi-infinite programming problems. J. Glob. Optim. 49, 713–725 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kanzi, N., Nobakhtian, S.: Optimality conditions for nonsmooth semi-infinite programming. Optimization 53, 717–727 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Kanzi, N., Nobakhtian, S.: Nonsmooth semi-infinite programming problems with mixed constraints. J. Math. Anal. Appl. 351, 170–181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kibardin, V.M.: Decomposition into functions in the minimization problem. Avtomat. i Telemekh., no. 9 (1979), 66–79 (in Russian). Automat. Remote Control 40, 1311–1323 (1980). (in English)

  23. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics. Springer, Berlin (1985)

    MATH  Google Scholar 

  24. Kiwiel, K.C.: Convergence of approximate and incremental subgradient methods for convex optimization. SIAM J. Optim. 14, 807–840 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kiwiel, K.C.: A proximal bundle method with approximate subgradient linearizations. SIAM J. Optim. 16, 1007–1023 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kortanek, K.O., No, H.: A central cutting plane algorithm for convex semi-infinite programming problems. SIAM J. Optim. 3, 901–918 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, D.H., Qi, L., Tam, J., Wu, S.-Y.: A smoothing Newton method for semi-infinite programming. J. Glob. Optim. 30, 169–194 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, C., Ng, K.F., Pong, T.K.: Constraint qualifications for convex inequality systems with applications in constrained optimization. SIAM J. Optim. 19, 163–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ling, C., Ni, Q., Qi, L.Q., Wu, S.-Y.: A new smoothing Newton-type algorithm for semi-infinite programming. J. Glob. Optim. 47, 133–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. López, M.A., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491–518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lv, J., Pang, L.P., Wang, J.H.: Special backtracking proximal bundle method for nonconvex maximum eigenvalue optimization. Appl. Math. Comput. 265, 635–651 (2015)

    MathSciNet  Google Scholar 

  32. Mehrotra, S., Papp, D.: A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization. SIAM J. Optim. 24, 1670–1697 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mordukhovich, Boris S., Nghia, T.T.A.: Subdifferentials of nonconvex supremum functions and their applications to semi-infinite and infinite programs with Lipschitzian data. SIAM J. Optim. 23, 406–431 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nedić, A., Bertsekas, D.P.: Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optim. 12, 109–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nguyen, T.T.V., Strodiot, J.J., Nguyen, V.H.: A bundle method for solving equilibrium problems. Math. Program. 116, 529–552 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ni, Q., Ling, C., Qi, L., Teo, K.L.: A truncated projected Newton-type algorithm for large-scale semi-infinite programming. SIAM J. Optim. 16, 1137–1154 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Oliveira, W., Sagastizábal, C., Scheimberg, S.: Inexact bundle methods for two-stage stochastic programming. SIAM J. Optim. 21, 517–544 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pang, L. P., Wang, M. Z., Xia, Z. Q.: First order necessary optimality conditions for a class of nonsmooth generalized semiinfinite optimization problems. Comput. Math. Appl. 56, 1457–1464 (2008)

  39. Polak, E.: On the use of consistent approximations in the solution of semi-infinite optimization and optimal control problems. Math. Program. 62, 385–414 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Puente, R., VeraDe Serio, V.N.: Locally farkas minkowski linear inequality systems. Top 7, 103–121 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Qi, L., Wu, S.Y., Zhou, G.: Semismooth Newton methods for solving semi-infinite programming problems. J. Global Optim. 27, 215–232 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Qi, L., Ling, C., Tong, X.J., Zhou, G.: A smoothing projected Newton-type algorithm for semi-infinite programming. Comput. Optim. Appl. 42, 1–30 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  44. Rockafellar, R.T., Wets, J.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  45. Sagastizábal, C.: Divide to conquer: decomposition methods for energy optimization. Math. Program. 134, 187–222 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sagastizábal, C., Solodov, M.V.: An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or a filter. SIAM J. Optim. 16, 146–169 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Salmon, G., Strodiot, J.-J., Nguyen, V.H.: A bundle method for solving variational inequalities. SIAM J. Optim. 14, 869–893 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shen, J., Pang, L. P.: A proximal analytic center cutting plane algorithm for solving variational inequality problems. J. Appl. Math. (2012). doi:10.1155/2012/503242

  49. Solodov, M.V.: A bundle method for a class of bilevel nonsmooth convex minimization problems. SIAM J. Optim. 18, 242–259 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Stein, O.: On constraint qualifications in nonsmooth optimization. J. Optim. Theory. Appl. 121, 647–671 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  51. Still, G.: Discretization in semi-infinite programming: the rate of convergence. Math. Program. 91, 53–69 (2001)

    MathSciNet  MATH  Google Scholar 

  52. Tanaka, Y., Fukushima, M., Ibaraki, T.: A globally convergent SQP method for semi-infinite nonlinear optimization. J. Comput. Appl. Math. 23, 141–153 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  53. Teo, K.L., Yang, X.Q., Jennings, L.S.: Computational discretization algorithms for functional inequality constrained optimization. Ann. Oper. Res. 28, 215–234 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  54. Tichatschke, R., Nebeling, V.: A cutting plane method for quadratic semi-infinite programming Problems. Optimization 19, 803–817 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wu, S.-Y., Fang, S.C., Lin, C.J.: Relaxed cutting plane method for solving linear semi-infinite programming problems. J. Optim. Theory Appl. 99, 759–779 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wu, S.-Y., Li, D.H., Qi, L., Zhou, G.: An iterative method for solving KKT system of the semi-infinite programming. Optim. Methods Softw. 20, 629–643 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wu, S.-Y., Fang, S.C.: Solving convex programs with infinitely many linear constraints by a relaxed cutting plane method. Comput. Math. Appl. 38, 23–33 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  58. Xu, M.W., Wu, S.-Y., Ye, J.J.: Solving semi-infinite programs by smoothing projected gradient method. Comput. Optim. Appl. 59, 591–616 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Xu, Q.J., Jian, J.B.: A nonlinear norm-relaxed method for finely discretized semi-infinite optimization problems. Nonlinear Dyn. 73, 85–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang, L.P., Wu, S.-Y., López, M.A.: A new exchange method for convex semi-infinite programming. SIAM J. Optim. 20, 2959–2977 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zheng, X.Y., Yang, X.Q.: Lagrange multipliers in nonsmooth semi-infinite optimization problems. Math. Oper. Res. 32, 168–181 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Partially supported by the Natural Science Foundation of China, Grant 11171049 and 31271077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ping Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, LP., Lv, J. & Wang, JH. Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems. Comput Optim Appl 64, 433–465 (2016). https://doi.org/10.1007/s10589-015-9810-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9810-0

Keywords