Abstract
Semi-infinite problem (SIPs) are widely used in many control systems for solving complex control problem, such as polymerase chain reaction control system or other real time control system. In this paper, we present a bundle method for solving the nonsmooth convex SIPs, with the aim of working on the basis of “improvement function”, “inexact oracle” and “incomplete knowledge” of the constraints. The proposed algorithm, whenever a new stabilized center is refreshed, requires an evaluation within some accuracy for the value of constraints. Beyond that, by using the incremental technique, it does not require all information about the constraints, but only one component function value and one subgradient needed to be estimated to update the bundle information and generate the search direction. Thus the computational cost is significantly reduced. Global convergence of this method is established based on some mild assumptions. Numerical experiments show that the algorithm is efficient for solving nonsmooth convex SIPs.
Similar content being viewed by others
References
Ackooij, W.V., Sagastizbal, C.: Constrained bundle methods for upper inexact oracles with application to joint chance constrained energy problems. SIAM J. Optim. 24, 733–765 (2014)
Bhattacharjee, B., Lemonidis, P., Green Jr, W.H., Barton, P.I.: Global solution of semi-infinite programs. Math. Program. 103, 283–307 (2005)
Cánovas, M.J., Hantoute, A., Láopez, M.A., Parra, J.: Stability of indices in the KKT conditions and metric regularity in convex semi-infinite optimization. J. Optim. Theory Appl. 139, 485–500 (2008)
Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58, 595–612 (2010)
Emiel, G., Sagastizábal, C.: Incremental-like bundle methods with application to energy planning. Comput. Optim. Appl. 46, 305–332 (2010)
Fang, S.C., Lin, C.J., Wu, S.-Y.: Solving quadratic semi-infinite programming problems by using relaxed cutting-plane scheme. J. Comput. Appl. Math. 129, 89–104 (2001)
Fuduli, A., Gaudioso, M., Giallombardo, G.: Minimizing nonconvex nonsmooth functions via cutting planes and proximity control. SIAM J. Optim. 14, 743–756 (2005)
Fuduli, A., Gaudioso, M., Giallombardo, G., Miglionico, G.: A partially inexact bundle method for convex semi-infinite minmax problems. Commun Nonlinear Sci Numer Simulat 21, 172–180 (2014)
Gaudioso, M., Giallombardo, G., Miglionico, G.: An incremental method for solving convex finite Min-Max problems. Math. Oper. Res. 31, 173–187 (2006)
Goberna, M.A., Lápez, M.A.: Linear Semi-infinite Optimization. Wiley, New York (1998)
Hare, W., Sagastizábal, C., Solodov, M.: A proximal bundle method for nonsmooth nonconvex functions with inexact information. Comput. Optim. Appl. doi:10.1007/s10589-015-9762-4
Helmberg, C., Rendl, F.: A spectral bundle method for semi-definite programming. SIAM J. Optim. 10, 673–696 (2000)
Hettich, R.: An implementation of a discretization method for semi-infinite programming. Math. Program. 34, 354–361 (1986)
Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods and applications. SIAM Rev. 35, 380–429 (1993)
Hiriart-Urruty, J.B., Lemarechal, C.: Convex analysis and minimization algorithms. Springer, Berlin, Heidelberg (1991)
Hu, H.: A one-phase algorithm for semi-infinite linear programming. Math. Program. 46, 85–103 (1990)
Jin, P., Ling, C., Shen, H.F.: A smoothing Levenberg-Marquardt algorithm for semi-infinite programming. Comput. Optim. Appl. 60, 675–695 (2015)
Jongen, HTh, Rückmann, J.-J., Stein, O.: Generalized semi-infinite optimization: a first order optimality condition and examples. Math. Program. 83, 145–158 (1998)
Kanzi, N.: Necessary optimality conditions for nonsmooth semi-infinite programming problems. J. Glob. Optim. 49, 713–725 (2011)
Kanzi, N., Nobakhtian, S.: Optimality conditions for nonsmooth semi-infinite programming. Optimization 53, 717–727 (2008)
Kanzi, N., Nobakhtian, S.: Nonsmooth semi-infinite programming problems with mixed constraints. J. Math. Anal. Appl. 351, 170–181 (2008)
Kibardin, V.M.: Decomposition into functions in the minimization problem. Avtomat. i Telemekh., no. 9 (1979), 66–79 (in Russian). Automat. Remote Control 40, 1311–1323 (1980). (in English)
Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics. Springer, Berlin (1985)
Kiwiel, K.C.: Convergence of approximate and incremental subgradient methods for convex optimization. SIAM J. Optim. 14, 807–840 (2003)
Kiwiel, K.C.: A proximal bundle method with approximate subgradient linearizations. SIAM J. Optim. 16, 1007–1023 (2006)
Kortanek, K.O., No, H.: A central cutting plane algorithm for convex semi-infinite programming problems. SIAM J. Optim. 3, 901–918 (1993)
Li, D.H., Qi, L., Tam, J., Wu, S.-Y.: A smoothing Newton method for semi-infinite programming. J. Glob. Optim. 30, 169–194 (2004)
Li, C., Ng, K.F., Pong, T.K.: Constraint qualifications for convex inequality systems with applications in constrained optimization. SIAM J. Optim. 19, 163–187 (2008)
Ling, C., Ni, Q., Qi, L.Q., Wu, S.-Y.: A new smoothing Newton-type algorithm for semi-infinite programming. J. Glob. Optim. 47, 133–159 (2010)
López, M.A., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491–518 (2007)
Lv, J., Pang, L.P., Wang, J.H.: Special backtracking proximal bundle method for nonconvex maximum eigenvalue optimization. Appl. Math. Comput. 265, 635–651 (2015)
Mehrotra, S., Papp, D.: A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization. SIAM J. Optim. 24, 1670–1697 (2014)
Mordukhovich, Boris S., Nghia, T.T.A.: Subdifferentials of nonconvex supremum functions and their applications to semi-infinite and infinite programs with Lipschitzian data. SIAM J. Optim. 23, 406–431 (2013)
Nedić, A., Bertsekas, D.P.: Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optim. 12, 109–138 (2001)
Nguyen, T.T.V., Strodiot, J.J., Nguyen, V.H.: A bundle method for solving equilibrium problems. Math. Program. 116, 529–552 (2009)
Ni, Q., Ling, C., Qi, L., Teo, K.L.: A truncated projected Newton-type algorithm for large-scale semi-infinite programming. SIAM J. Optim. 16, 1137–1154 (2006)
Oliveira, W., Sagastizábal, C., Scheimberg, S.: Inexact bundle methods for two-stage stochastic programming. SIAM J. Optim. 21, 517–544 (2011)
Pang, L. P., Wang, M. Z., Xia, Z. Q.: First order necessary optimality conditions for a class of nonsmooth generalized semiinfinite optimization problems. Comput. Math. Appl. 56, 1457–1464 (2008)
Polak, E.: On the use of consistent approximations in the solution of semi-infinite optimization and optimal control problems. Math. Program. 62, 385–414 (1993)
Puente, R., VeraDe Serio, V.N.: Locally farkas minkowski linear inequality systems. Top 7, 103–121 (1999)
Qi, L., Wu, S.Y., Zhou, G.: Semismooth Newton methods for solving semi-infinite programming problems. J. Global Optim. 27, 215–232 (2003)
Qi, L., Ling, C., Tong, X.J., Zhou, G.: A smoothing projected Newton-type algorithm for semi-infinite programming. Comput. Optim. Appl. 42, 1–30 (2009)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
Rockafellar, R.T., Wets, J.J.-B.: Variational Analysis. Springer, Berlin (1998)
Sagastizábal, C.: Divide to conquer: decomposition methods for energy optimization. Math. Program. 134, 187–222 (2012)
Sagastizábal, C., Solodov, M.V.: An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or a filter. SIAM J. Optim. 16, 146–169 (2005)
Salmon, G., Strodiot, J.-J., Nguyen, V.H.: A bundle method for solving variational inequalities. SIAM J. Optim. 14, 869–893 (2004)
Shen, J., Pang, L. P.: A proximal analytic center cutting plane algorithm for solving variational inequality problems. J. Appl. Math. (2012). doi:10.1155/2012/503242
Solodov, M.V.: A bundle method for a class of bilevel nonsmooth convex minimization problems. SIAM J. Optim. 18, 242–259 (2007)
Stein, O.: On constraint qualifications in nonsmooth optimization. J. Optim. Theory. Appl. 121, 647–671 (2004)
Still, G.: Discretization in semi-infinite programming: the rate of convergence. Math. Program. 91, 53–69 (2001)
Tanaka, Y., Fukushima, M., Ibaraki, T.: A globally convergent SQP method for semi-infinite nonlinear optimization. J. Comput. Appl. Math. 23, 141–153 (1988)
Teo, K.L., Yang, X.Q., Jennings, L.S.: Computational discretization algorithms for functional inequality constrained optimization. Ann. Oper. Res. 28, 215–234 (2000)
Tichatschke, R., Nebeling, V.: A cutting plane method for quadratic semi-infinite programming Problems. Optimization 19, 803–817 (1988)
Wu, S.-Y., Fang, S.C., Lin, C.J.: Relaxed cutting plane method for solving linear semi-infinite programming problems. J. Optim. Theory Appl. 99, 759–779 (1998)
Wu, S.-Y., Li, D.H., Qi, L., Zhou, G.: An iterative method for solving KKT system of the semi-infinite programming. Optim. Methods Softw. 20, 629–643 (2005)
Wu, S.-Y., Fang, S.C.: Solving convex programs with infinitely many linear constraints by a relaxed cutting plane method. Comput. Math. Appl. 38, 23–33 (1999)
Xu, M.W., Wu, S.-Y., Ye, J.J.: Solving semi-infinite programs by smoothing projected gradient method. Comput. Optim. Appl. 59, 591–616 (2014)
Xu, Q.J., Jian, J.B.: A nonlinear norm-relaxed method for finely discretized semi-infinite optimization problems. Nonlinear Dyn. 73, 85–92 (2013)
Zhang, L.P., Wu, S.-Y., López, M.A.: A new exchange method for convex semi-infinite programming. SIAM J. Optim. 20, 2959–2977 (2010)
Zheng, X.Y., Yang, X.Q.: Lagrange multipliers in nonsmooth semi-infinite optimization problems. Math. Oper. Res. 32, 168–181 (2007)
Acknowledgments
Partially supported by the Natural Science Foundation of China, Grant 11171049 and 31271077.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pang, LP., Lv, J. & Wang, JH. Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems. Comput Optim Appl 64, 433–465 (2016). https://doi.org/10.1007/s10589-015-9810-0
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-015-9810-0