Skip to main content

Variance reduction in Monte Carlo sampling-based optimality gap estimators for two-stage stochastic linear programming

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper presents a comparative computational study of the variance reduction techniques antithetic variates and Latin hypercube sampling when used for assessing solution quality in stochastic programming. Three Monte Carlo sampling-based procedures that provide point and interval estimators of optimality gap are considered: one that uses multiple replications, and two others with an alternative sample variance estimator that use single or two replications. Theoretical justification for using these alternative sampling techniques is discussed. In particular, we discuss asymptotic properties of the resulting estimators using Latin hypercube sampling for single- and two-replication procedures in detail. These theoretical considerations result in some subtle changes in the implementation of the procedures. A collection of two-stage stochastic linear test problems with different characteristics is used to empirically compare the three procedures for assessing solution quality with these variance reduction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Attouch, H., Wets, R.: Approximation and convergence in nonlinear optimization. In: Mangasarian, O., Meyer, R., Robinson, S. (eds.) Nonlinear Programming 4, pp. 367–394. Academic Press, New York (1981)

    Google Scholar 

  2. Bailey, T., Jensen, P., Morton, D.: Response surface analysis of two-stage stochastic linear programming with recourse. Nav. Res. Log. 46, 753–778 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayraksan, G., Morton, D.: Assessing solution quality in stochastic programs. Math. Program. 108, 495–514 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bayraksan, G., Morton, D.: A sequential sampling procedure for stochastic programming. Oper. Res. 59, 898–913 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bayraksan, G., Pierre-Louis, P.: Fixed-width sequential stopping rules for a class of stochastic programs. SIAM J. Optim. 22, 1518–1548 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beale, E.: On minimizing a convex function subject to linear inequalities. J. R. Stat. Soc. Ser. B 17, 173–184 (1955)

    MathSciNet  MATH  Google Scholar 

  7. Bertocchi, M., Dupačová, J., Moriggia, V.: Sensitivity of bond portfolio’s behavior with respect to random movements in yield curve: a simulation study. Ann. Oper. Res. 99, 267–286 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dantzig, G.: Linear programming under uncertainty. Manag. Sci. 1, 197–206 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dantzig, G., Glynn, P.: Parallel processors for planning under uncertainty. Ann. Oper. Res. 22, 1–21 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donohue, C., Birge, J.: An upper bound on the network recourse function. Working Paper. Department of Industrial and Operations Engineering, University of Michigan (1995)

  11. Drew, S.: Quasi-Monte Carlo methods for stochastic programming. Ph.D. thesis, Northwestern University (2007)

  12. Drew, S., Homem-de-Mello, T.: Quasi-Monte Carlo strategies for stochastic optimization. In: Proceedings of the 2006 Winter Simulation Conference, pp. 774–782 (2006)

  13. Drew, S., Homem-de-Mello, T.: Some large deviations results for Latin hypercube sampling. Methodol. Comput. Appl. 14, 203–232 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dupačová, J., Wets, R.B.: Asymptotic behavior of statistical estimators and of optimal solutions of stochastic optimization problems. Ann. Stat. 16, 1517–1549 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Freimer, M.B., Thomas, D.J., Linderoth, J.T.: The impact of sampling methods on bias and variance in stochastic linear programs. Comput. Optim. Appl. 51, 51–75 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Glynn, P., Infanger, G.: Simulation-based confidence bounds for two-stage stochastic programs. Math. Program. 138, 15–42 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hackney, B., Infanger, G.: Private Communication (1994)

  18. Higle, J.: Variance reduction and objective function evaluation in stochastic linear programs. INFORMS J. Comput. 10, 236–247 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Higle, J., Sen, S.: Duality and statistical tests of optimality for two stage stochastic programs. Math. Program. 75, 257–272 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Homem-de-Mello, T.: On rates of convergence for stochastic optimization problems under non-i.i.d. sampling. SIAM J. Optim. 19, 524–551 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Infanger, G.: Monte Carlo (importance) sampling within a Benders decomposition algorithm for stochastic linear programs. Ann. Oper. Res. 39, 69–95 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Keller, B., Bayraksan, G.: Scheduling jobs sharing multiple resources under uncertainty: a stochastic programming approach. IIE Trans. 42, 16–30 (2010)

    Article  Google Scholar 

  23. Kenyon, A., Morton, D.: Stochastic vehicle routing with random travel times. Transp. Sci. 37, 69–82 (2003)

    Article  Google Scholar 

  24. King, A., Rockafellar, R.: Asymptotic theory for solutions in statistical estimation and stochastic programming. Math. Oper. Res. 18, 148–162 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Koivu, M.: Variance reduction in sample approximations of stochastic programs. Math. Program. 103, 463–485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lan, G., Nemirovski, A., Shapiro, A.: Validation analysis of mirror descent stochastic approximation method. Math. Program. 134, 425–458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lemieux, C.: Monte Carlo and Quasi-Monte Carlo Sampling. Springer, New York (2009)

    MATH  Google Scholar 

  28. Linderoth, J., Shapiro, A., Wright, S.: The empirical behavior of sampling methods for stochastic programming. Ann. Oper. Res. 142, 215–241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Loh, W.L.: On Latin hypercube sampling. Ann. Stat. 24, 2058–2080 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mak, W., Morton, D., Wood, R.: Monte Carlo bounding techniques for determining solution quality in stochastic programs. Oper. Res. Lett. 24, 47–56 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. McKay, M., Conover, R., Beckman, W.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  32. Mulvey, J., Ruszczyński, A.: A new scenario decomposition method for large scale stochastic optimization. Oper. Res. 43, 477–490 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Norkin, V., Pflug, G., Ruszczyński, A.: A branch and bound method for stochastic global optimization. Math. Program. 83, 425–450 (1998)

    MathSciNet  MATH  Google Scholar 

  34. Owen, A.B.: A central limit theorem for Latin hypercube sampling. J. R. Stat. Soc. Ser. B 54, 541–551 (1992)

    MathSciNet  MATH  Google Scholar 

  35. Owen, A.B.: Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal. 34, 1884–1910 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pennanen, T., Koivu, M.: Epi-convergent discretizations of stochastic programs via integration quadratures. Numer. Math. 100, 141–163 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pierre-Louis, P., Morton, D., Bayraksan, G.: A combined deterministic and sampling-based sequential bounding method for stochastic programming. In: Proceedings of the 2011 Winter Simulation Conference, pp. 4172–4183. Piscataway, New Jersey (2011)

  38. Santoso, T., Ahmed, S., Goetschalckx, M., Shapiro, A.: A stochastic programming approach for supply chain network design under uncertainty. Eur. J. Oper. Res. 167, 96–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sen, S., Doverspike, R., Cosares, S.: Network planning with random demand. Telecommun. J. 3, 11–30 (1994)

    Article  Google Scholar 

  40. Shapiro, A.: Asymptotic properties of statistical estimators in stochastic programming. Ann. Stat. 17, 841–858 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shapiro, A., Homem-de-Mello, T.: A simulation-based approach to two-stage stochastic programming with recourse. Math. Program. 81, 301–325 (1998)

    MathSciNet  MATH  Google Scholar 

  42. Stockbridge, R.: Bias and variance reduction in assessing solution quality for stochastic programs. Ph.D. thesis, The University of Arizona (2013)

  43. Stockbridge, R., Bayraksan, G.: A probability metrics approach for reducing the bias of optimality gap estimators in two-stage stochastic linear programming. Math. Program. 142, 107–131 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Verweij, B., Ahmed, S., Kleywegt, A., Nemhauser, G., Shapiro, A.: The sample average approximation method applied to stochastic vehicle routing problems: a computational study. Comput. Optim. Appl. 24, 289–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Tito Homem-de-Mello for providing reference [11], the coordinating editor and the referees for suggestions that improved the paper, and Andrzej Ruszczyński and Artur Świetanowski for access to their regularized decomposition code, which was used to solve the test problems. In addition, allocations of computer time from the Ohio Supercomputer Center (http://osc.edu/ark:/19495/f5s1ph73), UA Research Computing High Performance Computing (HPC) and High Throughput Computing (HTC) at the University of Arizona, and the Wayne State University High Performance Computing Services are gratefully acknowledged. This research has been partially funded by the National Science Foundation Grant CMMI-1345626.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Stockbridge.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 273 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stockbridge, R., Bayraksan, G. Variance reduction in Monte Carlo sampling-based optimality gap estimators for two-stage stochastic linear programming. Comput Optim Appl 64, 407–431 (2016). https://doi.org/10.1007/s10589-015-9814-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9814-9

Keywords