Skip to main content

Theoretical and computational results about optimality-based domain reductions

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper we discuss optimality-based domain reductions for Global Optimization problems both from the theoretical and from the computational point of view. When applying an optimality-based domain reduction we can easily define a lower limit for the reduction which can be attained, but we can hardly guarantee that such limit is reached. Here, we theoretically prove that, for a nontrivial class of problems, appropriate strategies exist that are always able to reach this lower limit. On the other hand, we will also show that the same strategies lose this property as soon as we slightly enlarge the class of problems. Next, we perform computational experiments with a standard B&B approach applied to Linear Multiplicative Programming problems. We aim at establishing a good trade off between the quality of the domain reduction (the higher the quality, the lower the number of nodes in the B&B tree), and the computational cost of the domain reduction, and, thus, the effort per node of the B&B tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benson, H.P., Boger, G.M.: Multiplicative programming problems: analysis and efficient point search heuristic. J. Optim. Theory Appl. 94, 487–510 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Caprara, A., Locatelli, M.: Global optimization problems and domain reduction strategies. Math. Program. 125, 123–137 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Couenne, v. branch/CouenneClassifier, r1046. https://projects.coin-or.org/Couenne

  4. Hamed, A.S.E., McCormick, G.P.: Calculation of bounds on variables satisfying nonlinear inequality constraints. J. Global Optim. 3, 25–47 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hansen, P., Jaumard, B., Lu, S.-H.: An analytical approach to global optimization. Math. Program. 52, 227–254 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Konno, H., Kuno, T.: Linear multiplicative programming. Math. Program. 56, 51–64 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Konno, H., Yajima, Y., Matsui, T.: Parametric simplex algorithms for solving a special class of non-convex minimization problems. J. Global Optim. 1, 65–81 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Konno, H., Kuno, T., Yajima, Y.: Parametric simplex algorithms for a class of NP complete problems whose average number of steps is polynomial. Comput. Optim. Appl. 1, 227–239 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kuno, T.: A finite branch-and-bound algorithm for linear multiplicative programming. Comput. Optim. Appl. 20, 119–135 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, X.J., Umegaki, T., Yamamoto, Y.: Heuristic methods for linear multiplicative programming. J. Global Optim. 15, 433–447 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Maranas, C.D., Floudas, C.A.: Global optimization in generalized geometric programming. Comput. Chem. Eng. 21, 351–370 (1997)

    Article  MathSciNet  Google Scholar 

  12. Matsui, T.: NP-hardness of linear multiplicative programming and related problems. J. Global Optim. 9, 113–119 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Oliveira, R.M., Ferreira, P.A.V.: A convex analysis approach for convex multiplicative programming. J. Global Optim. 41, 579–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pardalos, P., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-hard. J. Global Optim. 1, 15–22 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Phillips, A.T., Rosen, J.B., Van Vliet, M.: A parallel stochastic method for solving linearly constrained concave global minimization problems. J. Global Optim. 2, 243–258 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Global Optim. 8, 107–139 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ryoo, H.S., Sahinidis, N.V.: Global optimization of multiplicative programs. J. Global Optim. 26, 387–418 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Global Optim. 8, 201–205 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tawarmalani, M., Sahinidis, N.V.: BARON on the Web. http://archimedes.scs.uiuc.edu/cgi/run.pl

  20. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zamora, J.M., Grossmann, I.E.: A Branch and Contract algorithm for problems with concave univariate, bilinear and linear fractional terms. J. Global Optim. 14, 217–249 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The third author was supported by the University of Padova (Progetto di Ateneo “Exploiting randomness in Mixed Integer Linear Programming”), and by MiUR, Italy (PRIN project “Mixed-Integer Nonlinear Optimization: Approaches and Applications”). The authors also thank two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Locatelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caprara, A., Locatelli, M. & Monaci, M. Theoretical and computational results about optimality-based domain reductions. Comput Optim Appl 64, 513–533 (2016). https://doi.org/10.1007/s10589-015-9818-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9818-5

Keywords