Abstract
Image deblurring techniques based on convex optimization formulations, such as total-variation deblurring, often use specialized first-order methods for large-scale nondifferentiable optimization. A key property exploited in these methods is spatial invariance of the blurring operator, which makes it possible to use the fast Fourier transform (FFT) when solving linear equations involving the operator. In this paper we extend this approach to two popular models for space-varying blurring operators, the Nagy–O’Leary model and the efficient filter flow model. We show how splitting methods derived from the Douglas–Rachford algorithm can be implemented with a low complexity per iteration, dominated by a small number of FFTs.







Similar content being viewed by others
References
Almeida, M.S.C., Figueiredo, M.A.T.: Deconvolving images with unknown boundaries using the alternating direction method of multipliers. IEEE Trans. Image Process. 22(8), 3074–3086 (2013)
Bardsley, J., Jefferies, S., Nagy, J., Plemmons, R.: A computational method for the restoration of images with an unknown, spatially-varying blur. Opt. Express 14(5), 1767–1782 (2006)
Hadj, S.B., Féraud, L.B.: Restoration method for spatially variant blurred images. Rapport de recherche RR-7654, INRIA (2011)
Hadj, S.B., Blanc-Féraud, L.: Modeling and removing depth variant blur in 3D fluorescence microscopy. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 689–692. IEEE (2012)
Hadj, S.B., Blanc-Féraud, L., Aubert, G.: Space variant blind image restoration. SIAM J. Imaging Sci. 7(4), 2196–2225 (2014)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)
Briceno-Arias, L.M., Combettes, P.L.: A monotone \(+\) skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21(4), 1230–1250 (2011)
Chakrabarti, A., Zickler, T., Freeman, W. T.: Analyzing spatially-varying blur. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2512–2519. IEEE (2010)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)
Chan, R.H., Tao, M., Yuan, X.: Constrained total variation deblurring methods and fast algorithms based on alternating direction method of multipliers. SIAM J. Imaging Sci. 6(1), 680–697 (2013)
Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. 28(5), 145:1–145:8 (2009)
Combettes, P.L., Pesquet, J.-C.: A Douglas–Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Top. Signal Process. 1(4), 564–574 (2007)
Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)
Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)
Denis, L., Thiebaut, E., Soulez, F.: Fast model of space-variant blurring and its application to deconvolution in astronomy. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 2817–2820 (2011)
Ekeland, I., Témam, R.: Convex Analysis and Variational Problems, Vol. 28 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1999). (First published in 1976 by North-Holland)
Escande, P., Weiss, P., Malgouyres, F.: Image restoration using sparse approximations of spatially varying blur operators in the wavelet domain. J. Phys. Conf. Ser. 464, 012004 (2013)
Fornasier, M., Langer, A., Schnlieb, C.-B.: A convergent overlapping domain decomposition method for total variation minimization. Numer. Math. 116(4), 645–685 (2010)
Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)
Hajlaoui, N., Chaux, C., Perrin, G., Falzon, F., Benazza-Benyahia, A.: Satellite image restoration in the context of a spatially varying point spread function. J. Opt. Soc. Am. A 27(6), 1473–1481 (2010)
Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images. Matrices, Spectra, and Filtering. Society for Industrial and Applied Mathematics, Philadelphia (2006)
Harmeling, S., Hirsch, M., Schölkopf, B.: Space-variant single-image blind deconvolution for removing camera shake. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 23, pp. 829–837. Curran Associates, Inc., New York (2010)
Hirsch, M., Schuler, C.J., Harmeling, S., Scholkopf, B.: Fast removal of non-uniform camera shake. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV ’11, pp. 463–470. IEEE Computer Society, Washington, DC (2011)
Hirsch, M., Sra, S., Scholkopf, B., Harmeling, S.: Efficient filter flow for space-variant multiframe blind deconvolution. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 607–614 (2010)
Joshi, N., Kang, S.B., Zitnick, C.L., Szeliski, R.: Image deblurring using inertial measurement sensors. ACM Trans. Graph. 29(4), 30:1–30:9 (2010)
Komodakis, N., Pesquet, J.-C.: Playing with duality: an overview of recent primal-dual approaches for solving large-scale optimization problems. arXiv:1406.5429 (2014)
Kutyniok, G., Shahram, M., Zhuang, X.: Shearlab: A rational design of a digital parabolic scaling algorithm. arXiv:1106.1319 (2011)
Levin, A.: Blind motion deblurring using image statistics. In NIPS, vol. 2, p. 4 (2006)
Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)
Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, London (1999)
Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Math. Soc. Fr. 93, 273–299 (1965)
Nagy, J.G., O’Leary, D.P.: Restoring images degraded by spatially variant blur. SIAM J. Sci. Comput. 19(4), 1063–1082 (1998)
O’Connor, D., Vandenberghe, L.: Primal-dual decomposition by operator splitting and applications to image deblurring. SIAM J. Imaging Sci. 7, 1724–1754 (2014)
Combettes, Patrick L.P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20(2), 307–330 (2012)
Preza, C., Conchello, J.-A.: Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy. JOSA A 21(9), 1593–1601 (2004)
Pustelnik, N., Chaux, C., Pesquet, J.-C.: Parallel proximal algorithm for image restoration using hybrid regularization. IEEE Trans. Image Process. 20(9), 2450–2462 (2011)
Rockafellar, R.T.: Convex Analysis, 2nd edn. Princeton University Press, Princeton (1970)
Rudin, L., Osher, S.J., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)
Rudin, L.I., Osher, S.: Total variation based image restoration with free local constraints. In: Proceedings ICIP-94, IEEE International Conference on Image Processing, 1994, vol. 1, pp. 31–35 (1994)
Vogel, C.R.: Computational Methods for Inverse Problems. Society for Industrial and Applied Mathematics, Philadelphia (2002)
Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. Int. J. Comput. Vision 98(2), 168–186 (2012)
Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., Harmeling, S.: Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In: Computer Vision–ECCV 2012, pp. 27–40. Springer (2012)
Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006)
Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford–Shah functional. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1133–1140. IEEE (2009)
Acknowledgements
Research supported in part by National Science Foundation Grants DMS-1115963 and ECCS 1509789.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
O’Connor, D., Vandenberghe, L. Total variation image deblurring with space-varying kernel. Comput Optim Appl 67, 521–541 (2017). https://doi.org/10.1007/s10589-017-9901-1
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-017-9901-1