Skip to main content
Log in

Shrinking gradient descent algorithms for total variation regularized image denoising

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Total variation regularization introduced by Rudin, Osher, and Fatemi (ROF) is widely used in image denoising problems for its capability to preserve repetitive textures and details of images. Many efforts have been devoted to obtain efficient gradient descent schemes for dual minimization of ROF model, such as Chambolle’s algorithm or gradient projection (GP) algorithm. In this paper, we propose a general gradient descent algorithm with a shrinking factor. Both Chambolle’s and GP algorithm can be regarded as the special cases of the proposed methods with special parameters. Global convergence analysis of the new algorithms with various step lengths and shrinking factors are present. Numerical results demonstrate their competitiveness in computational efficiency and reconstruction quality with some existing classic algorithms on a set of gray scale images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The standard test images can be found at http://homepages.cae.wisc.edu/~ece533/images.

  2. The peak signal-to-noise ratio (PSNR) of an image u with respect to the noiseless image f is defined as PSNR = \(20\log _{10}\left( \frac{\text {MAX}}{\text {RMSE}} \right) \), where MAX is the maximum possible pixel value of the image. In our case, MAX = 255.

References

  1. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1), 259–268 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Campagna, R., Crisci, S., Cuomo, S., et al.: A second order derivative scheme based on Bregman algorithm class. AIP Conf. Proc. 1776(1), 040007 (2016)

    Article  Google Scholar 

  3. Bresson, X., Chan, T.F.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Probl. Imaging 2(4), 455–484 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Goldluecke, B., Strekalovskiy, E., Cremers, D.: The natural vectorial total variation which arises from geometric measure theory. SIAM J. Imaging Sci. 5(2), 537–563 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Goldluecke, B., Cremers, D.: An approach to vectorial total variation based on geometric measure theory. In: Computer Vision and Pattern Recognition (CVPR), pp. 327–333 (2010)

  6. Hu, Y., Jacob, M.: Higher degree total variation (HDTV) regularization for image recovery. IEEE Trans. Image Process 21(5), 2559–2571 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chan, R.H., Liang, H., Wei, S., et al.: High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Probl. Imaging 9, 55–77 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. In: UCLA CAM 08-34 (2008)

  10. Zhu, M., Wright, S.J., Chan, T.F.: Duality-based algorithms for total–variation–regularized image restoration. Comput. Optim. Appl. 47(3), 377–400 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dai, Y.H., Fletcher, R.: Projected Barzilai–Borwein methods for large-scale box-constrained quadratic programming. Numer. Math. 100(1), 21–47 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dai, Y.H., Hager, W.W., Schittkowski, K., et al.: The cyclic Barzilai–Borwein method for unconstrained optimization. IMA J. Numer. Anal. 26(3), 604–627 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process 57(7), 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  15. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process 18(11), 2419–2434 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. J. Math. Imaging Vis. 2(1), 183–202 (2009)

    MATH  MathSciNet  Google Scholar 

  17. Toh, K.C., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. 6(615–640), 15 (2010)

    MATH  MathSciNet  Google Scholar 

  18. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Springer, Berlin (2013)

    MATH  Google Scholar 

  19. Tseng P.: On accelerated proximal gradient methods for convex–concave optimization (submitted). SIAM J. Optim. (2008)

  20. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence \(O (1/k^2)\). Dokl. SSSR 269(3), 543–547 (1983)

    MathSciNet  Google Scholar 

  21. Nesterov, Y.: Gradient methods for Minimizing Composite Objective Function. UCL, London (2007)

    Google Scholar 

  22. Wang, Y., Yang, J., Yin, W., et al.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tai, X. C., Wu, C.: Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model. In: Scale Space and Variational Methods in Computer Vision, pp. 502–513. Springer Berlin Heidelberg (2009)

  24. Goldfarb, D., Yin, W.: Second-order cone programming methods for total variation-based image restoration. SIAM J. Sci. Comput. 27(2), 622–645 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Goldstein, T., Osher, S.: The split Bregman algorithm for L1 regularized problems. UCLA CAM (2008)

  26. Zhang, X., Burger, M., Osher, S.: A unified primal–dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Yin, W.: Analysis and generalizations of the linearized Bregman method. SIAM J. Imaging Sci. 3(4), 856–877 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Osher, S., Mao, Y., Dong, B., et al.: Fast linearized Bregman iteration for compressive sensing and sparse denoising. Commun. Math. Sci. 8(1), 93–111 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Cai, J.F., Osher, S., Shen, Z.: Linearized Bregman iterations for frame-based image deblurring. SIAM J. Imaging Sci. 2(1), 226–252 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Cuomo, S., Campagna, R., De Michele, P., et al.: A novel Split Bregman algorithm for MRI denoising task in an e-Health system. In: Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments, p. 78 (2016)

  31. Hintermuller, M., Langer, A.: Non-overlapping domain decomposition methods for dual total variation based image denoising. J. Sci. Comput. 62(2), 456–481 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  32. Han, C., Zheng, F., He, G.: Parallel algorithms for large-scale linearly constrained minimization problem. Acta Math. Appl. Sin. Engl. Ser. 30(3), 707–720 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  33. Chang, H., Tai, X.C., Wang, L.L., et al.: Convergence rate of overlapping domain decomposition methods for the Rudin–Osher–Fatemi model based on a dual formulation. SIAM J. Imaging Sci. 8(1), 564–591 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zheng, F., Han, C., Wang, Y.: Parallel SSLE algorithm for large scale constrained optimization. Appl. Math. Comput. 217(12), 5377–5384 (2011)

    MATH  MathSciNet  Google Scholar 

  35. Han, C., Feng, T., He, G., et al.: Parallel variable distribution algorithm for constrained optimization with nonmonotone technique. J. Appl. Math. 2013(1), 401–420 (2013)

    MATH  MathSciNet  Google Scholar 

  36. Asmundis, R., Serafino, D., Landi, G.: On the regularizing behavior of the SDA and SDC gradient methods in the solution of linear ill-posed problems. J. Comput. Appl. Math. 302, 81–93 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  37. Huang, H., Ascher, U.: Faster gradient descent and the efficient recovery of images. Vietnam J. Math. 42(1), 115–131 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  38. Ekeland, I., Temam, R.: Convex Analysis and 9 Variational Problems. SIAM, New Delhi (1976)

    MATH  Google Scholar 

  39. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congying Han.

Additional information

This work was supported by the National Natural Science Foundation of China (11571014, 11331012 and 71271204).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Han, C., Wang, R. et al. Shrinking gradient descent algorithms for total variation regularized image denoising. Comput Optim Appl 68, 643–660 (2017). https://doi.org/10.1007/s10589-017-9931-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9931-8

Keywords

Navigation