Abstract
Determining the set of all optimal solutions of a linear program with interval data is one of the most challenging problems discussed in interval optimization. In this paper, we study the topological and geometric properties of the optimal set and examine sufficient conditions for its closedness, boundedness, connectedness and convexity. We also prove that testing boundedness is co-NP-hard for inequality-constrained problems with free variables. Furthermore, we prove that computing the exact interval hull of the optimal set is NP-hard for linear programs with an interval right-hand-side vector. We then propose a new decomposition method for approximating the optimal solution set based on complementary slackness and show that the method provides the exact description of the optimal set for problems with a fixed coefficient matrix. Finally, we conduct computational experiments to compare our method with the existing orthant decomposition method.




Similar content being viewed by others
References
Allahdadi, M., Mishmast Nehi, H.: The optimal solution set of the interval linear programming problems. Optim. Lett. 7(8), 1893–1911 (2013)
Ben-Tal, A., Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2009)
Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Program. 99(2), 351–376 (2004)
Chen, X., Zhang, Y.: Uncertain linear programs: extended affinely adjustable robust counterparts. Oper. Res. 57(6), 1469–1482 (2009)
Garajová, E.: The optimal solution set of interval linear programming problems. Master’s thesis, Charles University, Prague (2016). http://is.cuni.cz/webapps/zzp/detail/168259/?lang=en. Accessed 3 Oct 2016
Gerlach, W.: Zur Lösung linearer Ungleichungssysteme bei Störung der rechten Seite und der Koeffizientenmatrix. Math. Operationsforsch. Stat., Ser Optim. 12(1), 41–43 (1981)
Hiriart-Urruty, J.B.: Images of connected sets by semicontinuous multifunctions. J. Math. Anal. Appl. 111(2), 407–422 (1985)
Hladík, M.: Tolerances in portfolio selection via interval linear programming. In: Rehorova, P., Marsikova, K., Hubinka, Z. (eds.) Proceedings of 26th International Conferences on Mathematical Methods in Economics, Liberec, Czech Republic, pp. 185–191. Technical University Liberec (2008)
Hladík, M.: Interval linear programming: a survey. In: Z.A. Mann (ed.) Linear Programming—New Frontiers in Theory and Applications, chap. 2, pp. 85–120. Nova Science Publishers, New York (2012)
Hladík, M.: An interval linear programming contractor. In: Ramík, J., Stavárek, D. (eds.) Proceedings of 30th International Conference on Mathematical Methods in Economics, Karviná, Czech Republic, pp. 284–289 (Part I.). Silesian University in Opava, School of Business Administration in Karviná (2012)
Hladík, M.: Weak and strong solvability of interval linear systems of equations and inequalities. Linear Algebra Appl. 438(11), 4156–4165 (2013)
Hladík, M.: How to determine basis stability in interval linear programming. Optim. Lett. 8(1), 375–389 (2014)
Hladík, M.: On approximation of the best case optimal value in interval linear programming. Optim. Lett. 8(7), 1985–1997 (2014)
Hladík, M., Horáček, J.: Interval Linear Programming Techniques in Constraint Programming and Global Optimization, pp. 47–59. Springer, Cham (2014)
Huang, G., Baetz, B.W., Patry, G.G.: A grey linear programming approach for municipal solid waste management planning under uncertainty. Civil Eng. Syst. 9(4), 319–335 (1992)
Jansson, C.: A self-validating method for solving linear programming problems with interval input data. In: Scientific Computation with Automatic Result Verification, pp. 33–45. Springer, Vienna (1988)
Jansson, C.: Calculation of exact bounds for the solution set of linear interval systems. Linear Algebra Appl. 251, 321–340 (1997)
Lai, K.K., Wang, S.Y., Xu, J.P., Zhu, S.S., Fang, Y.: A class of linear interval programming problems and its application to portfolio selection. IEEE Trans. Fuzzy Syst. 10(6), 698–704 (2002)
Li, W.: A note on dependency between interval linear systems. Optim. Lett. 9(4), 795–797 (2015)
Liu, S.T., Kao, C.: Matrix games with interval data. Comput. Ind. Eng. 56(4), 1697–1700 (2009)
Liu, Z., Huang, G., Nie, X., He, L.: Dual-interval linear programming model and its application to solid waste management planning. Environ. Eng. Sci. 26(6), 1033–1045 (2009)
Machost, B.: Numerische Behandlung des Simplexverfahrens mit intervallanalytischen Methoden. Tech. Rep. 30, Berichte der GMD, Bonn (1970)
McKeown, P.G., Minch, R.A.: Multiplicative interval variation of objective function coefficients in linear programming. Manag. Sci. 28(12), 1462–1470 (1982)
Meyer, R.R.: Continuity properties of linear programs. Tech. rep., University of Wisconsin, Madison Department of Computer Sciences (1979)
Mostafaee, A., Hladík, M., Černý, M.: Inverse linear programming with interval coefficients. J. Comput. Appl. Math. 292, 591–608 (2016)
Munkres, J.: Topology. Pearson Custom Library. Pearson Education, Limited, Pearson (2013)
Oettli, W., Prager, W.: Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numerische Mathematik 6(1), 405–409 (1964)
Rohn, J.: Enclosing solutions of linear interval equations is NP-hard. Computing 53(3), 365–368 (1994)
Rohn, J.: Complexity of some linear problems with interval data. Reliab. Comput. 3(3), 315–323 (1997)
Rohn, J.: Interval linear programming. In: Linear Optimization Problems with Inexact Data, pp. 79–100. Springer, New York (2006)
Rohn, J.: Solvability of systems of interval linear equations and inequalities. In: Linear Optimization Problems with Inexact Data, pp. 35–77. Springer, New York (2006)
Wets, R.J.B.: On the continuity of the value of a linear program and of related polyhedral-valued multifunctions. In: Cottle, R.W. (ed.) Mathematical Programming Essays in Honor of George B. Dantzig Part I, pp. 14–29. Springer, Berlin (1985)
Zhen, J., den Hertog, D., Sim, M.: Adjustable robust optimization via Fourier-Motzkin elimination. Oper. Res. 66(4), 1086–1100 (2018). https://doi.org/10.1287/opre.2017.1714
Zhou, F., Huang, G.H., Chen, G.X., Guo, H.C.: Enhanced-interval linear programming. Eur. J. Oper. Res. 199(2), 323–333 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This paper was presented at the 12th International Conference on Applied Mathematical Programming and Modelling (APMOD 2016) held in Brno, Czech Republic.
The authors were supported by the Czech Science Foundation Grant P403-18-04735S and by the Charles University, Project GA UK No. 156317.
Rights and permissions
About this article
Cite this article
Garajová, E., Hladík, M. On the optimal solution set in interval linear programming. Comput Optim Appl 72, 269–292 (2019). https://doi.org/10.1007/s10589-018-0029-8
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-018-0029-8