Skip to main content
Log in

A primal-dual interior-point method based on various selections of displacement step for symmetric optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we develop a primal-dual central trajectory interior-point algorithm for symmetric programming problems and establish its complexity analysis. The main contribution of the paper is that it uniquely equips the central trajectory algorithm with various selections of the displacement step while solving symmetric programming. To show the efficiency of the proposed algorithm, these selections of calculating the displacement step are compared in numerical examples for second-order cone programming, which is a special case of symmetric programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The direct sum of two square matrices A and B is the block diagonal matrix \(A \oplus B := \left[ \begin{array}{cc} A&{}0\\ 0&{}B\\ \end{array} \right] \).

References

  1. Schmieta, S.H., Alizadeh, F.: Extension of primal-dual interior point methods to symmetric cones. Math. Program. Ser. A 96, 409–438 (2003)

    Article  MATH  Google Scholar 

  2. Schmieta, S.H., Alizadeh, F.: Associative and Jordan algebras, and polynomial time interior point algorithms for symmetric cones. Math. Oper. Res. 26(3), 543–564 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. Ser. B 95, 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alzalg, B.: Stochastic second-order cone programming: application models. Appl. Math. Model. 36, 5122–5134 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Todd, M.J.: Semidefinite optimization. ACTA Numer. 10, 515–560 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nesterov, Y.E., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim. 8(2), 324–364 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alzalg, B., Ariyawansa, K.A.: Logarithmic barrier decomposition-based interior point methods for stochastic symmetric programming. J. Math. Anal. Appl. 409, 973–995 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Alzalg, B., Maggiono, F., Vitali, S.: Homogeneous self-dual methods for symmetric cones under uncertainty. Far East J. Math. Sci. 99(11), 1603–1778 (2016)

    MATH  Google Scholar 

  10. Benterki, D., Leulmi, A.: An improving procedure of the interior projective method for linear programming. Appl. Math. Comput. 199, 811–819 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Dodani, M., Babu, A.: Karmarkar’s projective method for linear programming: a computational appraisal. Comput. Ind. Eng. 16, 189–206 (1989)

    Article  Google Scholar 

  12. Todd, M., Wang, Y.: On combined phase 1-phase 2 projective methods for linear programming. Algorithmica 9, 64–83 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, Y.: On extending primal-dual interior-point algorithms from linear programming to semidefinite programming. SIAM J. Optim. 8, 356–386 (1998)

    Article  MathSciNet  Google Scholar 

  14. Hans, Y.-J., Mittelmann, D.: Interior point methods for second-order cone programming and OR applications. Comput. Optim. Appl. 28, 255–285 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tang, J., He, G., Dong, L., Fang, L.: A new one-step smoothing newton method for second-order cone programming. Appl. Math. 57, 311–331 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Alzalg, B.: Homogeneous self-dual algorithms for stochastic second-order cone programming. J. Optim. Theory Appl. 163(1), 148–164 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Alzalg, B.: Decomposition-based interior point methods for stochastic quadratic second-order cone programming. Appl. Math. Comput. 249, 1–18 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Alzalg, B.: Volumetric barrier decomposition algorithms for stochastic quadratic second-order cone programming. Appl. Math. Comput. 256, 494–508 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Kettab, S., Benterki, D.: A relaxed logarithmic barrier method for semidefinite programming. RAIRO Oper. Res. 42, 555–568 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Crouzeix, J.P., Merikhi, B.: A logarithm barrier method for semidefinite programming. RAIRO Oper. Res. 42, 123–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Monteiro, R.D.: Primal-dual path-following algorithms for semidefinite programming. SIAM J. Optim. 7, 663–678 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior-point methods for stochastic semidefinite programming. SIAM J. Optim. 6, 342–361 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Touil, I., Benterki, D., Yassine, A.: A feasible primal-dual interior point method for linear semidefinite programming. J. Comput. Appl. Math. 312, 216–230 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kebbiche, Z., Keraghel, A., Yassine, A.: Extension of a projective interior point method for linearly constrained convex programming. Appl. Math. Comput. 193, 553–559 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Gahinet, P., Nemirovski, A.: The projective method for solving linear matrix inequalities. Math. Prog. 77, 163–190 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Behling, R., Gonzaga, C., Haeser, G.: Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization. J. Optim. Theory Appl. 162, 705–717 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gould, N., Orban, D., Robinson, D.: Trajectory-following methods for large-scale degenerate convex quadratic programming. Math. Prog. Comput. 5, 113–142 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. MOSEK is an optimization software designed to solve large-scale mathematical optimization problems. http://www.mosek.com/. Accessed 5 Oct 2017

  29. Toh, K.C., Todd, M.J., Tutuncu, R.H.: SDPT3 version 4.0–a MATLAB software for semidefinite-quadratic-linear programming, (2009). Available online at: http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

  30. Wolkowicz, H., Styan, G.-P.-H.: Bounds for eigenvalues using traces. Linear Algebra Appl. 29, 471–506 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  32. Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone linear complementarity problem in symmetric matrices. SIAM J. Optim. 7(9), 86–125 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lütkepohl, H.: Handbook of Matrices. Humboldt-Universität zu Berlin, Germany (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

A part of this work was performed while the author was visiting The Center for Applied and Computational Mathematics at Rochester Institute of Technology, NY, USA. The work of the author was supported in part by the Deanship of Scientific Research at the University of Jordan. The author thanks the two anonymous expert referees for their valuable suggestions. The constructive comments from the referees have greatly enhanced the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baha Alzalg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzalg, B. A primal-dual interior-point method based on various selections of displacement step for symmetric optimization. Comput Optim Appl 72, 363–390 (2019). https://doi.org/10.1007/s10589-018-0045-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-018-0045-8

Keywords

Mathematics Subject Classification

Navigation