Skip to main content
Log in

Optimal control in first-order Sobolev spaces with inequality constraints

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, an elliptic optimal control problem with controls from \(H^1(\varOmega )\) which have to satisfy standard box constraints is considered. Thus, Lagrange multipliers associated with the box constraints are, in general, elements of \(H^1(\varOmega )^\star \) as long as the lower and upper bound belong to \(H^1(\varOmega )\) as well. If these bounds possess less regularity, the overall existence of a Lagrange multiplier is not even guaranteed. In order to avoid the direct solution of a not necessarily available KKT system, a penalty method is suggested which finds the minimizer of the control-constrained problem. Its convergence properties are analyzed. Furthermore, some numerical strategies for the computation of optimal solutions are suggested and illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier, Oxford (2003)

    MATH  Google Scholar 

  2. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces, MPS/SIAM Series on Optimization, vol. 6. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2006)

    MATH  Google Scholar 

  3. Bergounioux, M., Kunisch, K.: On the structure of Lagrange multipliers for state-constrained optimal control problems. Syst. Control Lett. 48(3), 169–176 (2003). https://doi.org/10.1016/S0167-6911(02)00262-1

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  5. Christof, C., Meyer, C., Walther, S., Clason, C.: Optimal control of a non-smooth semilinear elliptic equation. Math. Control Relat. Fields 8(1), 247–276 (2018). https://doi.org/10.3934/mcrf.2018011

    Article  MathSciNet  MATH  Google Scholar 

  6. Ciarlet, P., Lions, J.L.: Handbook of Numerical Analysis. Part I—Finite Element Methods, vol. II. North-Holland, Amsterdam (1991)

    Google Scholar 

  7. Clason, C., Rund, A., Kunisch, K.: Nonconvex penalization of switching control of partial differential equations. Syst. Control Lett. 106, 1–8 (2017). https://doi.org/10.1016/j.sysconle.2017.05.006

    Article  MathSciNet  MATH  Google Scholar 

  8. De los Reyes, J.C.: Numerical PDE-Constrained Optimization. Springer, Heidelberg (2015)

    MATH  Google Scholar 

  9. Deng, Y., Mehlitz, P., Prüfert, U.: On an optimal control problem with gradient constraints. Preprint TU Bergakademie Freiberg (2018). https://doi.org/10.13140/RG.2.2.27509.06881

  10. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  11. George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, New Jersey (1981)

    MATH  Google Scholar 

  12. Gilbert, J., Moler, C., Schreiber, R.: Sparse matrices in MATLAB: design and implementation. SIAM J. Matrix Anal. Appl. 13(1), 333–356 (1992). https://doi.org/10.1137/0613024

    Article  MathSciNet  MATH  Google Scholar 

  13. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  14. Haws, J.C.: Preconditioning KKT systems. In: Ph.D. Thesis, North Carolina State University, Raleigh (2002)

  15. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30(1), 45–61 (2005). https://doi.org/10.1007/s10589-005-4559-5

    Article  MathSciNet  MATH  Google Scholar 

  16. Hinze, M., Pinnau, R., Ulbich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  17. Ito, K., Kunisch, K.: Semi-smooth Newton methods for state-constrained optimal control problems. Syst. Control Lett. 50(3), 221–228 (2003). https://doi.org/10.1016/S0167-6911(03)00156-7

    Article  MathSciNet  MATH  Google Scholar 

  18. Jahn, J.: Introduction to the Theory of Nonlinear Optimization. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  19. Mehlitz, P.: Necessary optimality conditions for a special class of bilevel programming problems with unique lower level solution. Optimization 66(10), 1533–1562 (2017). https://doi.org/10.1080/02331934.2017.1349123

    Article  MathSciNet  MATH  Google Scholar 

  20. Mehlitz, P., Wachsmuth, G.: The limiting normal cone to pointwise defined sets in lebesgue spaces. Set-Valued Var. Anal. 26(3), 449–467 (2018). https://doi.org/10.1007/s11228-016-0393-4

    Article  MathSciNet  MATH  Google Scholar 

  21. Neitzel, I., Prüfert, U., Slawig, T.: A smooth regularization of the projection formula for constrained parabolic optimal control problems. Numer. Funct. Anal. Optim. 32(12), 1283–1315 (2011). https://doi.org/10.1080/01630563.2011.597915

    Article  MathSciNet  MATH  Google Scholar 

  22. Pearson, J.W., Stoll, M., Wathen, A.J.: Preconditioners for state-constrained optimal control problems with MoreauYosida penalty function. Numer. Linear Algebra with Appl. 21(1), 81–97 (2014). https://doi.org/10.1002/nla.1863

    Article  MathSciNet  MATH  Google Scholar 

  23. Prüfert, U.: OOPDE: an object oriented toolbox for finite elements in MATLAB. TU Bergakademie Freiberg (2015). http://www.mathe.tu-freiberg.de/files/personal/255/oopde-quickstart-guide-2015.pdf. Accessed 21 Feb 2018

  24. Qi, L., Sun, D.: A survey of some nonsmooth equations and smoothing newton methods. pp. 121–146. Springer, Boston (1999). https://doi.org/10.1007/978-1-4613-3285-5_7

  25. Robinson, S.M.: Stability theory for systems of inequalities, part II: differentiable nonlinear systems. SIAM J. Numer. Anal. 13(4), 497–513 (1976). https://doi.org/10.1137/0713043

    Article  MathSciNet  MATH  Google Scholar 

  26. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  27. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Vieweg, Wiesbaden (2009)

    MATH  Google Scholar 

  28. Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. MOS-SIAM, Bangkok (2011)

    Book  MATH  Google Scholar 

  29. Wachsmuth, G.: Pointwise constraints in vector-valued sobolev spaces. Appl. Math. Optim. 77(3), 463–497 (2018). https://doi.org/10.1007/s00245-016-9381-1

    Article  MathSciNet  MATH  Google Scholar 

  30. Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5(1), 49–62 (1979). https://doi.org/10.1007/BF01442543

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank two anonymous referees whose valuable comments were essential in order to enhance the paper’s overall quality. This work is partially supported by the DFG Grant Analysis and Solution Methods for Bilevel Optimal Control Problems within the Priority Program SPP 1962 (Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Mehlitz, P. & Prüfert, U. Optimal control in first-order Sobolev spaces with inequality constraints. Comput Optim Appl 72, 797–826 (2019). https://doi.org/10.1007/s10589-018-0053-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-018-0053-8

Keywords

Mathematics Subject Classification

Navigation