Skip to main content
Log in

A singular value p-shrinkage thresholding algorithm for low rank matrix recovery

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose an iterative singular value p-shrinkage thresholding algorithm for solving low rank matrix recovery problem, and also give its two accelerated versions using randomized singular value decomposition. The convergence result of the proposed singular value p-shrinkage thresholding algorithm is proved. Numerical results based on simulation data and real data show the effectiveness of all the three proposed algorithms compared to the existing state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Please see Proposition 2.2 in Sect. 2.2 for details.

  2. When \(t=0\), we assign \(0^{0}\) the value 1.

  3. Here, the penalty function \(g_p^{\mu }\) can be constructed by using the Legendre–Fenchel transform of an antiderivative of the proximal operator \(s_p^{\mu }\).

  4. The definition of sampling ratio sr is given in Sect. 4.1.

  5. http://statweb.stanford.edu/~candes/svt/.

  6. http://www.math.nus.edu.sg/~mattohkc/NNLS.html.

  7. http://www4.comp.polyu.edu.hk/~cslzhang/code/WNNM_MC_code.zip.

  8. In the experiments, the iteration numbers of ADMc algorithm can not be reported, because there are a sequence of parameters {\(\lambda _{s} \)} created in the iteration, which uses a data driven regularization selection rules.

References

  1. Bian, W., Chen, X.: Worst-case complexity of smoothing quadratic regularization methods for non-Lipschitzian optimization. SIAM J. Optim. 23(3), 1718–1741 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bian, W., Chen, X., Ye, Y.: Complexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimization. Math. Program. 149(1–2), 301–327 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image Inpainting. ACM SIGGRAPH, pp. 417–424 (2000)

  4. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14(10), 707–710 (2007)

    Article  Google Scholar 

  5. Chartrand, R.: Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), pp. 262–265 (2009)

  6. Chartrand, R.: Nonconvex splitting for regularized low-rank + sparse decomposition. IEEE Trans. Signal Process. 60, 5810–5819 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chartrand, R.: Shrinkage mappings and their induced penalty functions. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1026–1029 (2014)

  8. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chartrand, R., Wohlberg, B.: A nonconvex ADMM algorithm for group sparsity with sparse groups. In: International Conference on Acoustics, Speech and Signal Processing (2013)

  10. Candes, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Candes, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fazel, M.: Matrix rank minimization with applications. PhD thesis, Stanford University (2002)

  14. Friedman, J.H.: Fast sparse regression and classification. Int. J. Forecast. 28(3), 722–738 (2012)

    Article  Google Scholar 

  15. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gu, S., Xie, Q., Meng, D., Zuo, W., Feng, X., Zhang, L.: Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 121(2), 183–208 (2017)

    Article  Google Scholar 

  17. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jin, Z.-F., Wan, Z., Jiao, Y., Lu, X.: An alternating direction method with continuation for nonconvex low rank minimization. J. Sci. Comput. 66(2), 849–869 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Korah, T., Rasmussen, C.: Spatio-temporal inpainting for recovering texture maps of occluded building facades. IEEE Trans. Image Process. 16(7), 2262–2271 (2007)

    Article  MathSciNet  Google Scholar 

  20. Kong, L., Tuncel, L., Xiu, N.: Sufficient conditions for low-rank matrix recovery, translated from sparse signal recovery (2011). arXiv preprint arXiv:1106.3276

  21. Kong, L., Xiu, N.: Exact low-rank matrix recovery via nonconvex schatten \(p\)-minimization. Asia-Pac. J. Oper. Res. 30(03), 1340010 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lai, M.J., Xu, Y., Yin, W.: Improved iteratively reweighted least squares for unconstrained smoothed \(l_q\) minimization. SIAM J. Numer. Anal. 51(2), 927–957 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Y.-F., Zhang, Y.-J., Huang, Z.-H.: A reweighted nuclear norm minimization algorithm for low rank matrix recovery. J. Comput. Appl. Math. 263, 338–350 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lu, Y., Zhang, L., Wu, J.: A smoothing majorization method for matrix minimization. Optim. Methods Softw. 30(4), 1–24 (2014)

    MathSciNet  Google Scholar 

  25. Moreau, J.-J.: Functions convexes duales et points proximaux dans un espace hilbertien. C. R. Ácad. Sci. Paris 255, 2897–2899 (1962)

    MATH  Google Scholar 

  26. Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimization. Math. Program. 128(1–2), 321–353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Marjanovic, G., Solo, V.: On \(l_p\) optimization and matrix completion. IEEE Trans. Signal Process. 60(11), 5714–5724 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Majumdar, A., Ward, R.K., Aboulnasr, T.: A FOCUSS based method for low rank matrix recovery. In: Proceedings of \(19\)th IEEE International Conference on Image Processing (ICIP), pp. 1713–1716 (2012)

  29. Mohan, K., Fazel, M.: Iterative reweighted algorithms for matrix rank minimization. J. Mach. Learn. Res. 13(1), 3441–3473 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Oymak, S., Hassibi, B.: New null space results and recovery thresholds for matrix rank minimization (2010). arXiv preprint, arXiv:1011.6326

  31. Oymak, S., Mohan, K., Fazel, M., Hassibi, B.: A simplified approach to recovery conditions for low rank matrices. In: Proceedings of IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2318–2322 (2011)

  32. Peng, D., Xiu, N., Yu, J.: \(S_{\frac{1}{2}}\) regularization methods and fixed point algorithms for affine rank minimization problems. Optim. Online (2013)

  33. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Recht, B., Xu, W., Hassibi, B.: Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization. In: Proceedings of \(47\)-th IEEE Conference on Decision and Control (CDC), pp. 3065–3070 (2008)

  35. Recht, B., Xu, W., Hassibi, B.: Null space conditions and thresholds for rank minimization. Math. Program. 127(1), 175–202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Toh, K.C., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. 6(15), 615–640 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Voronin, S., Chartrand, R.: A new generalized thresholding algorithm for inverse problems with sparsity constraints. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (2013)

  38. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  39. Woodworth, J., Chartrand, R.: Compressed sensing recovery via nonconvex shrinkage penalties. Inverse Probl. 32, 075004 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4(4), 333–361 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xu, Z., Chang, X., Xu, F., Zhang, H.: \(L_{1/2}\) regularization: a thresholding representation theory and a fast solver. IEEE Trans. Neural Netw. Learn. Syst. 23(7), 1013–1027 (2012)

    Article  Google Scholar 

  42. Yue, M.-C., So, A.M.-C.: A perturbation inequality for concave functions of singular values and its applications in low-rank matrix recovery. Appl. Comput. Harmon. Anal. 40, 396–416 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, C.H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38, 894–942 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, M., Huang, Z.-H., Zhang, Y.: Restricted-isometry properties of nonconvex matrix recovery. IEEE Trans. Inf. Theory 59(7), 4316–4323 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Yangyang Xu and Zheng-Fen Jin for their kindly help to send us the code of t-IRucLq and ADMc algorithms, respectively. In addition, the authors deeply appreciate the anonymous referees for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Shang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 11431002, 11871051 and the Fundamental Research Funds for the Central Universities under Grant No. 18lgpy70.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YF., Shang, K. & Huang, ZH. A singular value p-shrinkage thresholding algorithm for low rank matrix recovery. Comput Optim Appl 73, 453–476 (2019). https://doi.org/10.1007/s10589-019-00084-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00084-y

Keywords

Mathematics Subject Classification

Navigation