Skip to main content
Log in

The Uzawa-MBB type algorithm for nonsymmetric saddle point problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The Uzawa type algorithms have shown themselves to be competitive for solving large and sparse saddle point problems. They reduce the original problem to a lower-dimensional linear system and solve the derived equation instead. In this paper, we propose new Uzawa-MBB type and preconditioned Uzawa-MBB type algorithms for the nonsymmetric saddle point problems. The main contributions of the paper are that both of the new algorithms are constructed from optimization algorithms, use a special descent direction based on Xu et al. (A new Uzawa-exact type algorithm for nonsymmetric saddle point problems, 2018. arXiv preprint arXiv:1802.04135 ), and combine the modified Barzilai–Borwein method with modified GLL line search strategy to solve the derived least squares problem. In addition, we analyze the convergence of the two new algorithms. Applications to finite element discretization of Navier–Stokes equation with an unstable pair of approximation spaces, i.e. Q1–P0 pair, are discussed and the results of the numerical experiments of applying our new algorithms are reported, which demonstrate the competitive performance of the preconditioned Uzawa-MBB type algorithms with Krylov subspace methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu, Z., Jiang, T., Gao, L.: A New Uzawa-exact type Algorithm for Nonsymmetric Saddle Point Problems. arXiv preprint arXiv:1802.04135 (2018)

  2. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations. Lecture Notes in Mathematics, vol. 739. Springer, New York (1981)

    MATH  Google Scholar 

  3. Karakashian, O.A.: On a Galerkin–Larange multipliear method for the stationary Navier–Stokes equations. SIAM J. Numer. Anal. 19, 9089–923 (1982)

    Article  Google Scholar 

  4. Arrow, K.J., Hurwicz, L., Uzawa, H.: Studies in Linear and Non-Linear Programming. Stanford University Press, Stanford, California (1958)

    MATH  Google Scholar 

  5. Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31(6), 1645–1661 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Uzawa type algorithms for nonsymmetric saddle point problems. Math. Comput. 69, 667–689 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, Z.H.: Fast Uzawa algorithms for solving nonsymmetric saddle point problems. Numer. Linear Algebra Appl. 11, 1–24 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sonneveld, P., Van Gijzen, M.B.: IDR(s): a family of simple and fast algorithms for solving large nonsymmetric systems of linear equations. SIAM J. Sci. Comput. 31(2), 1035–1062 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cauchy, A.: Méthode générale pour la résolution des systemes d’équations simultanées. C. R. Sci. Paris 25, 536–538 (1847)

    Google Scholar 

  14. Wright, S., Nocedal, J.: Numerical optimization. Science 35, 67–68 (1999)

    MATH  Google Scholar 

  15. Birgina, E.G., Evtusenko, Y.G.: Automatic differentiation and spectral projected gradient methods for optimal control problems. Optim. Methods Softw. 10(2), 125–146 (1998)

    Article  MathSciNet  Google Scholar 

  16. Birgin, E.G., Martinez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10(4), 1196–1211 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, W., Dai, Y.H.: Minimization algorithms based on supervisor and searcher cooperation. J. Optim. Theory Appl. 111(2), 359–379 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dai, Y.H., Liao, L.Z.: R-linear convergence of the Barzilai and Borwein gradient method. IMA J. Numer. Anal. 22(1), 1–10 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Glunt, W., Hayden, T.L., Raydan, M.: Molecular conformations from distance matrices. J. Comput. Chem. 14(1), 114–120 (1993)

    Article  Google Scholar 

  20. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7(1), 26–33 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23(4), 707–716 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Elemnet Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  23. Li, D.H., Fukushima, M.: A derivative-free line search and global convergence of Broyden-like method for nonlinear equations. Optim. Methods Softw. 13(3), 181–201 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34(3), 1072–1092 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. In: Numerical Mathematics & Scientific Computation. Oxford University Press, Oxford (2014)

  26. Silvester, D.J., Elman, H.C., Ramage, A.: IFISS: incompressible flow iterative solution software. http://www.manchester.ac.uk/ifiss/ (2012)

  27. Saad, Y.: Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the reviewers for their careful reading of the manuscript and insightful comments, which significantly improve the presentation of the paper, especially the numerical performance of the algorithms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhitao Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Gao, L. The Uzawa-MBB type algorithm for nonsymmetric saddle point problems. Comput Optim Appl 73, 933–956 (2019). https://doi.org/10.1007/s10589-019-00094-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00094-w

Keywords

Mathematics Subject Classification

Navigation