Skip to main content
Log in

Empirical study of exact algorithms for the multi-objective spanning tree

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The multi-objective spanning tree (MoST) is an extension of the minimum spanning tree problem (MST) that, as well as its single-objective counterpart, arises in several practical applications. However, unlike the MST, for which there are polynomial-time algorithms that solve it, the MoST is NP-hard. Several researchers proposed techniques to solve the MoST, each of those methods with specific potentialities and limitations. In this study, we examine those methods and divide them into two categories regarding their outcomes: Pareto optimal sets and Pareto optimal fronts. To compare the techniques from the two groups, we investigated their behavior on 2, 3 and 4-objective instances from different classes. We report the results of a computational experiment on 8100 complete and grid graphs in which we analyze specific features of each algorithm as well as the computational effort required to solve the instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aggarwal, V., Aneja, Y., Nair, K.: Minimal spanning tree subject to a side constraint. Comput. Oper. Res. 9, 287–296 (1982)

    Article  Google Scholar 

  2. Alonso, S., Domínguez-Ríos, M.A., Colebrook, M., Sedeño-Noda, A.: Optimality conditions in preference-based spanning tree problems. Eur. J. Oper. Res. 198, 232–240 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andersen, K.A., Jörnsten, K., Lind, M.: On bicriterion minimal spanning trees: an approximation. Comput. Oper. Res. 23(12), 1171–1182 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arroyo, J.E.C., Vieira, P.S., Vianna, D.S.: A GRASP algorithm for the multi-criteria minimum spanning tree problem. Ann. Oper. Res. 159, 125–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrow, J.D., Bhavsar, S.P., Sonoda, D.H.: Minimal spanning trees, filaments and galaxy clustering. Mon. Not. R. Astron. Soc. 216(1), 17–35 (1985)

    Article  Google Scholar 

  6. Bazlamaçci, C.F., Hindi, K.S.: Minimum-weight spanning tree algorithms a survey and empirical study. Comput. Oper. Res. 28(8), 767–785 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, G., Chen, S., Guo, W., Chen, H.: The multi-criteria minimum spanning tree problem based genetic algorithm. Inf. Sci. 117(22), 5050–5063 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christofides, N., Mingozzi, A., Toth, P.: Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations. Math. Program. 20(1), 255–282 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Climaco, J.C., Pascoal, M.M.B.: Multicriteria path and tree problems: discussion on exact algorithms and applications. Int. Trans. Oper. Res. 19, 63–98 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corley, H.W.: Efficient spanning trees. J. Optim. Theory Appl. 45(3), 481–485 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davis-Moradkhan, M., Browne, W. N., Grindrod, P.: Extending evolutionary algorithms to discover tri-criterion and non-supported solutions for the minimum spanning tree problem. In: GECCO ’09—Genetic and Evolutionary Computational Conference, 2009, Montréal. Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO ’09), pp. 1829–1830 (2009)

  12. Davis-Moradkhan, M., Browne, W.N.: A knowledge-based evolution strategy for the multi-objective minimum spanning tree problem. In: IEEE Congress on Evolutionary Computation, 2006. CEC 2006, pp. 1391–1398 (2006)

  13. Davis-Moradkhan, M.: Multi-criterion optimization in minimum spanning trees. Stud. Inform. Univers. 8, 185–208 (2010)

    Google Scholar 

  14. Dias, J.: Sovereign debt crisis in the European Union: a minimum spanning tree approach. Physica A 391(5), 2046–2055 (2012)

    Article  Google Scholar 

  15. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum 22, 425–460 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eom, C., Kwon, O., Jung, W.S., Kim, S.: The effect of a market factor on information flow between stocks using the minimal spanning tree. Physica A 389(8), 1643–1652 (2010)

    Article  Google Scholar 

  17. Galand, L., Perny, P., Spanjaard, O.: Choquet-based optimisation in multiobjective shortest path and spanning tree problem. Eur. J. Oper. Res. 204, 303–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  19. Grönlund, A., Bhalerao, R.P., Karlsson, J.: Modular gene expression in Poplar: a multilayer network approach. New Phytol. 181(2), 315–322 (2009)

    Article  Google Scholar 

  20. Hamacher, H.W., Ruhe, G.: On spanning tree problems with multiple objectives. Ann. Oper. Res. 52, 209–230 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jothi, R., Raghavachari, B.: Approximation algorithms for the capacitated minimum spanning tree problem and its variants in network design. ACM Trans. Algorithms 1(2), 265–282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Knowles, J.D., Corne, D.W.: Enumeration of Pareto optimal multi-criteria spanning trees—a proof of the incorrectness of Zhou and Gen’s proposed algorithm. Eur. J. Oper. Res. 143(3), 543–547 (2002)

    Article  MATH  Google Scholar 

  23. Knowles, J.D., Corne, D.W.: Benchmark problem generators and results for the multiobjective degree-constrained minimum spanning tree problem. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 424–431 (2001)

  24. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lokman, B., Köksalan, M.: Finding all nondominated points of multi-objective integer programs. J. Global Optim. 57(2), 347–365 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Luo, J., Zhang, X.: New method for constructing phylogenetic tree based on 3D graphical representation. In: ICBBE 2007 The 1st International Conference on Bioinformatics and Biomedical Engineering, pp. 318–321 (2007)

  27. Magnanti, T.L., Wong, R.T.: Network design and transportation planning: models and algorithms. Transp. Sci. 18(1), 1–55 (1984)

    Article  Google Scholar 

  28. Melhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  29. Monteiro, S.M.D., Goldbarg, E.F.G., Goldbarg, M.C.: A plasmid based transgenetic algorithm for the biobjective minimum spanning tree problem. In: EVOCOP09—European Conference on Evolutionary Computation in Combinatorial Optimization, 2009, Tübingen. Lecture Notes in Computer Science, vol. 5482, pp. 49–60 (2009)

  30. Monteiro, S.M.D., Goldbarg, E.F.G., Goldbarg, M.C.: A new transgenetic approach for the biobjective spanning tree problem. In: IEEE CEC 2010 Congress on Evolutionary Computation, 2010, Barcelona. Proceedings of IEEE CEC 2010 Congress on Evolutionary Computation, vol. 1, pp 519–526 (2010)

  31. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: an experimental study. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Computer Science, vol. 535, pp. 177–200. Springer, Berlin (2004)

    Chapter  Google Scholar 

  32. Paquete, L., Stützle, T.: A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices. Eur. J. Oper. Res. 169, 943–959 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Perny, P., Spanjaard, O.: A preference-based approach to spanning trees and shortest paths problems. Eur. J. Oper. Res. 165, 584–601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389–1401 (1957)

    Article  Google Scholar 

  35. Pugliese, L.P., Guerriero, F., Santos, J.L.: Dynamic programming for spanning tree problems: application to the multi-objective case. Optim. Lett. 9, 437–450 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ramos, R.M., Alonso, S., Sicilia, J., González, C.: The problem of the optimal biobjective spanning tree. Eur. J. Oper. Res. 111(3), 617–628 (1998)

    Article  MATH  Google Scholar 

  37. Rocha, D.A.M., Goldbarg, E.F.G., Goldbarg, M.C.: A memetic algorithm for the biobjective minimum spanning tree problem. In: 6th European Conference on Evolutionary Computation in Combinatorial Optimization, Budapest, Lecture Notes in Computer Science, vol. 3906, pp 222–233 (2006)

  38. Rocha, D.A.M., Goldbarg, E.F.G., Goldbarg, M.C.: A new evolutionary algorithm for the bi-objective minimum spanning tree. In: ISDA’07 Seventh International Conference on Intelligent Systems Design and Applications, 2007, Rio de Janeiro. Proceedings of ISDA’07, vol. 1, pp. 735–740 (2007)

  39. Ruzika, S., Hamacher, H.W.: A survey on multiple objective minimum spanning tree problems. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks, pp. 104–116. Springer, Berlin (2009)

    Chapter  Google Scholar 

  40. Santos, J.L., Pugliese, L.P., Guerriero, F.: A new approach for the multiobjective minimum spanning tree. Comput. Oper. Res. 98, 69–83 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sörensen, K., Janssens, G.K.: An algorithm to generate all spanning trees of a graph in order of increasing cost. Pesquisa Operacional 25(2), 219–229 (2005)

    Article  Google Scholar 

  42. Sourd, F., Spanjaard, O.: A multiobjective branch-and-bound framework: application to the biobjective spanning tree problem. INFORMS J. Comput. 20(3), 472–484 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Steiner, S., Radzik, T.: Computing all efficient solutions of the biobjective minimum spanning tree problem. Comput. Oper. Res. 35(1), 198–211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sylva, J., Crema, A.: A method for finding the set of non-dominated vectors for multiple objective integer linear programs. Eur. J. Oper. Res. 158(1), 46–55 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Talbi, E.G., Basseur, M., Nebro, A.J., Alba, E.: Multi-objective optimization using metaheuristics: non-standard algorithms. Int. Trans. Oper. Res. 19(1–2), 283–305 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tewarie, P., Hillebrand, A., Schoonheim, M.M., Van Dijk, B.W., Geurts, J.J.G., Barkhof, F., Polman, C.H., Stam, C.J.: Functional brain network analysis using minimum spanning trees in Multiple Sclerosis: an MEG source-space study. Neuroimage 88, 308–318 (2014)

    Article  Google Scholar 

  47. van Dellen, E., Douw, L., Hillebrand, A., de witt Hamer, P.C., Baayen, J.C., Heimans, J.J., Reijneveld, J.C., Stam, C.J.: Epilepsy surgery outcome and functional network alterations in longitudinal MEG: a minimum spanning tree analysis. Neuroimage 86, 354–363 (2014)

    Article  Google Scholar 

  48. Waxman, B.M.: Routing of multipoint connections. IEEE J. Sel. Areas Commun. 6(9), 1617–1622 (1988)

    Article  Google Scholar 

  49. Zhou, G., Gen, M.: Genetic algorithm approach on multi-criteria minimum spanning tree problem. Eur. J. Oper. Res. 114, 141–152 (1999)

    Article  MATH  Google Scholar 

  50. Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evolut. Comput. 1, 32–49 (2011)

    Article  Google Scholar 

  51. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Francis Sourd and Olivier Spanjaard who kindly provided the code of their algorithm. This research was partially supported by the NPAD/UFRN (High Performance Computing Center at Universidade Federal do Rio Grande do Norte) and by the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Brazil, under Grants 301845/2013-1, 308062/2014-0 and 130286/2017-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. G. Goldbarg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 183 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, I.F.C., Goldbarg, E.F.G., Maia, S.M.D.M. et al. Empirical study of exact algorithms for the multi-objective spanning tree. Comput Optim Appl 75, 561–605 (2020). https://doi.org/10.1007/s10589-019-00154-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00154-1

Keywords

Navigation