Skip to main content
Log in

An inexact proximal generalized alternating direction method of multipliers

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper proposes and analyzes an inexact variant of the proximal generalized alternating direction method of multipliers (ADMM) for solving separable linearly constrained convex optimization problems. In this variant, the first subproblem is approximately solved using a relative error condition whereas the second one is assumed to be easy to solve. In many ADMM applications, one of the subproblems has a closed-form solution; for instance, \(\ell _1\) regularized convex composite optimization problems. The proposed method possesses iteration-complexity bounds similar to its exact version. More specifically, it is shown that, for a given tolerance \(\rho >0\), an approximate solution of the Lagrangian system associated to the problem under consideration is obtained in at most \(\mathcal {O}(1/\rho ^2)\) (resp. \(\mathcal {O}(1/\rho )\) in the ergodic case) iterations. Numerical experiments are presented to illustrate the performance of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adona, V.A., Gonçalves, M.L.N., Melo, J.G.: Iteration-complexity analysis of a generalized alternating direction method of multipliers. J. Glob. Optim. 73(2), 331–348 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adona, V.A., Gonçalves, M.L.N., Melo, J.G.: A partially inexact proximal alternating direction method of multipliers and its iteration-complexity analysis. J. Optim. Theory Appl. 182(2), 640–666 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. U. S. A. 96(12), 6745–6750 (1999)

    Article  Google Scholar 

  4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beer, D.G., Kardia, S.L.R., Huang, C., Giordano, T.J., Levin, A.M., Misek, D.E., Lin, L., Chen, G., Gharib, T.G., Thomas, D.G., et al.: Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8(8), 816 (2002)

    Article  Google Scholar 

  6. Bertsekas, D.P.: Constrained optimization and Lagrange multiplier methods. Academic Press, New York (1982)

    MATH  Google Scholar 

  7. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  8. Bredies, K., Sun, H.: A proximal point analysis of the preconditioned alternating direction method of multipliers. J. Optim. Theory Appl. 173(3), 878–907 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cano, A., Masegosa, A., Moral, S.: ELVIRA biomedical data set repository. http://leo.ugr.es/elvira/DBCRepository/ (2005). Accessed on 7 Jan 2018

  10. Dheeru, D., Taniskidou, E.K.: UCI machine learning repository. http://archive.ics.uci.edu/ml/datasets/madelon (2018). Accessed on 7 Jan 2018

  11. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Progr. 55(3, Ser. A), 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eckstein, J., Silva, P.J.S.: A practical relative error criterion for augmented Lagrangians. Math. Progr. 141(1), 319–348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eckstein, J., Yao, W.: Approximate ADMM algorithms derived from Lagrangian splitting. Comput. Optim. Appl. 68(2), 363–405 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eckstein, J., Yao, W.: Relative-error approximate versions of Douglas-Rachford splitting and special cases of the ADMM. Math. Progr. 170(2), 417–444 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fang, E.X., Bingsheng, H., Liu, H., Xiaoming, Y.: Generalized alternating direction method of multipliers: new theoretical insights and applications. Math. Progr. Comput. 7(2), 149–187 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  17. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par penalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. R.A.I.R.O. 9(R2), 41–76 (1975)

    MATH  Google Scholar 

  18. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)

    Article  Google Scholar 

  19. Gonçalves, M.L.N., Alves, M.M., Melo, J.G.: Pointwise and ergodic convergence rates of a variable metric proximal alternating direction method of multipliers. J. Optim. Theory Appl. 177(2), 448–478 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gonçalves, M.L.N., Melo, J.G., Monteiro, R.D.C.: On the iteration-complexity of a non-Euclidean hybrid proximal extragradient framework and of a proximal ADMM. Optimization (2019). https://doi.org/10.1080/02331934.2019.1652297

    Article  MATH  Google Scholar 

  21. Guyon, I., Gunn, S., Hur, A.B., Dror, G.: Result analysis of the NIPS 2003 feature selection challenge. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, pp. 545–552. MIT Press, Cambridge (2005)

    Google Scholar 

  22. Koh, K., Kim, S.J., Boyd, S.: An interior-point method for large-scale \(l_{1}\)-regularized logistic regression. J. Mach. Learn. Res. 8, 1519–1555 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Nishihara, R., Lessard, L., Recht, B., Packard, A., Jordan, M.I.: A general analysis of the convergence of ADMM. arXiv preprint arXiv:1502.02009 (2015)

  24. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  25. Pomeroy, S.L., Tamayo, P., Gaasenbeek, M., Sturla, L.M., Angelo, M., McLaughlin, M.E., Kim, J.Y.H., Goumnerova, L.C., Black, P.M., Lau, C., et al.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415(6870), 436–442 (2002)

    Article  Google Scholar 

  26. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  27. Shipp, M.A., Ross, K.N., Tamayo, P., Weng, A.P., Kutok, J.L., Aguiar, R.C.T., Gaasenbeek, M., Angelo, M., Reich, M., Pinkus, G.S., et al.: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 8(1), 68–74 (2002)

    Article  Google Scholar 

  28. Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., et al.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2), 203–209 (2002)

    Article  Google Scholar 

  29. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7(4), 323–345 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1), 59–70 (1999)

    MathSciNet  MATH  Google Scholar 

  31. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Tibshirani, R.J.: The Lasso problem and uniqueness. Electron. J. Stat. 7, 1456–1490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xie, J., Liao, A., Yang, X.: An inexact alternating direction method of multipliers with relative error criteria. Optim. Lett. 11(3), 583–596 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Melo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of these authors was supported in part by CAPES, FAPEG/GO, and CNPq Grants 302666/2017-6, 312559/2019-4 and 408123/2018-4.

Appendix A: Proof of Proposition 1

Appendix A: Proof of Proposition 1

The proof of Proposition 1 is divided into the following steps. First we prove the inclusion in Proposition 1(a), and then we establish two technical lemmas which will be used to prove the inequality in Propositions1(a) and 1(b).

First, note that the definitions of \(\tilde{\gamma }_{k}\) and \(\gamma _{k}\) given in (12) and (14), respectively, imply that

$$\begin{aligned} \tilde{\gamma }_k-\gamma _{k-1}=\frac{\beta }{\alpha } B(y_{k}-y_{k-1})+\frac{1}{\alpha }\left( \gamma _{k}-\gamma _{k-1}\right) , \quad \forall k\ge 1. \end{aligned}$$
(44)

Proof of the inclusion in Proposition 1(a): From the inclusion in (11) and the first relation in (14), we have

$$\begin{aligned} \frac{1}{\beta }(x_{k-1}-x_k)=v_k\in \partial f({{\tilde{x}}}_k)-A^{*}\tilde{\gamma }_{k}. \end{aligned}$$
(45)

Now, the first-order optimality condition for (13) and the definition of \(\gamma _k\) in (14) imply that

$$\begin{aligned} 0 \in \partial g(y_k)-B^{*}\gamma _{k}+H(y_k- y_{k-1}). \end{aligned}$$
(46)

On the other hand, it follows from (44) that

$$\begin{aligned} \gamma _k= \tilde{\gamma }_k-\frac{1-\alpha }{\alpha }(\gamma _{k}-\gamma _{k-1})-\frac{\beta }{\alpha }B(y_{k}-y_{k-1}), \end{aligned}$$

which, combined with (46), yields

$$\begin{aligned} \left(H+\frac{\beta }{\alpha } B^{*}B\right)\left( y_{k-1}-y_{k}\right) +\frac{1-\alpha }{\alpha }B^{*}\left( \gamma _{k-1}-\gamma _{k}\right) \in \partial g(y_k)-B^{*}\tilde{\gamma }_k. \end{aligned}$$
(47)

From the second equality in (14), we obtain

$$\begin{aligned} \frac{1-\alpha }{\alpha }B \left( y_{k-1}-y_{k}\right) +\frac{1}{\alpha \beta }\left( \gamma _{k-1}-\gamma _{k}\right) = A{\tilde{x}}_k+By_k-b. \end{aligned}$$
(48)

Therefore, the inclusion in Proposition 1(a) now follows by combining (45), (47), (48) and the definitions of M and T in (16).

In order to prove the remaining statements of Proposition 1, we need to establish two technical results. Note first that the relation in (44) implies that

$$\begin{aligned} \left\| \tilde{\gamma }_{k}-\gamma _{k-1}\right\| ^{2}=\frac{\beta }{\alpha ^{2}}\left\| (y_{k}-y_{k-1},\gamma _{k}-\gamma _{k-1})\right\| ^{2}_{S}, \quad \text{ where }\quad S = \left[ \begin{array}{cc} \beta B^{*}B &{} B^{*}\\ B&{}\frac{1}{\beta }I \end{array} \right] . \end{aligned}$$
(49)

For simplicity, we also consider the following symmetric matrices

$$\begin{aligned} N=\left[ \begin{array}{cc} \left[ 1+\alpha (2-\alpha )\right] \beta B^{*}B &{}(1+\alpha -\alpha ^{2})B^{*}\\ (1+\alpha -\alpha ^{2})B&{}\frac{1}{\beta }I \end{array} \right] ,\quad P=\left[ \begin{array}{cc} \beta B^{*}B&{}(1-\alpha )B^{*}\\ (1-\alpha )B &{}\frac{(1-\alpha )^{2}}{\beta }I \end{array} \right] . \end{aligned}$$
(50)

It is easy to verify that S, N and P are positive semidefinite for every \(\beta >0\) and \(\alpha \in (0,2)\).

Lemma 1

Let \(\{z_k\}\) and \(\{{{\tilde{z}}}_k\}\) be as in (18). Then, for every \(k\ge 1\), the following hold:

$$\begin{aligned} \left\| {\tilde{z}}_{k}-z_{k-1}\right\| _{M}^{2}\ge \frac{1}{\beta }\left\| {\tilde{x}}_{k}-x_{k-1}\right\| ^{2} + \frac{1}{\alpha ^{3}}\left\| \left( y_{k}-y_{k-1},\gamma _{k}-\gamma _{k-1}\right) \right\| _{N}^{2} \end{aligned}$$
(51)

and

$$\begin{aligned} \left\| {\tilde{z}}_{k}-z_{k}\right\| _{M}^{2}=\frac{1}{\beta }\left\| {\tilde{x}}_{k}-x_{k}\right\| ^{2}+\frac{1}{\alpha ^{3}}\left\| \left( y_{k}-y_{k-1},\gamma _{k}-\gamma _{k-1}\right) \right\| _{P}^{2}, \end{aligned}$$
(52)

where the matrices M, N and P are as in (16) and (50).

Proof

Using the fact that \({\tilde{z}}_{k}-z_{k-1}=({\tilde{x}}_{k}-x_{k-1},y_{k}-y_{k-1},\tilde{\gamma }_{k}-\gamma _{k-1})\) and the definition of M in (16), we obtain

$$\begin{aligned} \Vert {\tilde{z}}_{k}- z_{k-1}\Vert _{M}^2=&\frac{1}{\beta }\Vert {\tilde{x}}_k-x_{k-1}\Vert ^2+\Vert y_{k}-y_{k-1}\Vert _{H}^2+ \frac{\beta }{\alpha }\Vert B(y_{k}-y_{k-1})\Vert ^2\\&+\frac{2(1-\alpha )}{\alpha }\left\langle {B(y_{k}-y_{k-1})},{\tilde{\gamma }_{k}-\gamma _{k-1}}\right\rangle + \frac{1}{\alpha \beta }\Vert {\tilde{\gamma }}_k-\gamma _{k-1}\Vert ^2. \end{aligned}$$

On the other hand, equality (44) implies that

$$\begin{aligned} \left\langle {B(y_{k}-y_{k-1})},{\tilde{\gamma }_{k}-\gamma _{k-1}}\right\rangle =\frac{\beta }{\alpha }\Vert B (y_{k}-y_{k-1})\Vert ^2+\frac{1}{\alpha }\langle {B(y_{k}-y_{k-1})},{\gamma _{k}-\gamma _{k-1}}\rangle , \end{aligned}$$

and

$$\begin{aligned}&\left\| \tilde{\gamma }_{k} -\gamma _{k-1}\right\| ^2=\frac{\beta ^{2}}{\alpha ^{2}}\Vert B(y_{k} -y_{k-1})\Vert ^2+\frac{2\beta }{\alpha ^{2}}\langle {B(y_{k}-y_{k-1})},{\gamma _{k}-\gamma _{k-1}}\rangle \\&\quad +\frac{1}{\alpha ^{2}}\Vert \gamma _{k} -\gamma _{k-1}\Vert ^2. \end{aligned}$$

Combining the last three equalities, we find

$$\begin{aligned} \Vert {\tilde{z}}_{k}- z_{k-1}\Vert _{M}^2\ge & {} \frac{1}{\beta }\Vert {\tilde{x}}_k-x_{k-1}\Vert ^2+ \left( \frac{1}{\alpha }+\frac{2(1-\alpha )}{\alpha ^2}+\frac{1}{\alpha ^{3}}\right) \beta \Vert B(y_{k}-y_{k-1})\Vert ^2\\&+\left( \frac{2(1-\alpha )}{\alpha ^{2}}+\frac{2}{\alpha ^{3}}\right) \left\langle {B(y_{k}-y_{k-1})},{\gamma _{k}-\gamma _{k-1}}\right\rangle + \frac{1}{\alpha ^{3}\beta }\Vert \gamma _k-\gamma _{k-1}\Vert ^2. \end{aligned}$$

Thus, (51) follows from the last equality and the definition of N in (50).

Let us now prove (52). Using \({\tilde{z}}_{k}-z_{k}=({\tilde{x}}_{k}-x_{k},0,\tilde{\gamma }_{k}-\gamma _{k})\) [see (18)] and the definition of M in (16), we have

$$\begin{aligned} \Vert {{\tilde{z}}}_k-z_k\Vert ^2_{M}= \frac{1}{\beta }\Vert {\tilde{x}}_k-x_{k}\Vert ^2+\frac{1}{\alpha \beta }\Vert \tilde{\gamma }_k-\gamma _{k}\Vert ^2. \end{aligned}$$

It follows from (44) and some algebraic manipulations that

$$\begin{aligned} \left\| \tilde{\gamma }_k-\gamma _k\right\| ^{2}= & {} \frac{\beta ^{2}}{\alpha ^{2}}\Vert B (y_{k}-y_{k-1})\Vert ^2+ \frac{2(1-\alpha )\beta }{\alpha ^{2}}\langle { B(y_{k}-y_{k-1})},{\gamma _k-\gamma _{k-1}}\rangle \\&+\frac{(1-\alpha )^{2}}{\alpha ^{2}}\left\| \gamma _{k}-\gamma _{k-1}\right\| ^{2}. \end{aligned}$$

Therefore, the desired equality now follows by combining the last two equalities and the definition of P in (50). \(\square\)

Lemma 2

Let \(\{(x_k,y_k,\gamma _k)\}\) be generated by Algorithm 1. Then, the following hold:

(a):

\(2\langle {B(y_1-y_{0})},{\gamma _1-\gamma _{0}}\rangle \ge \Vert y_1-y_{0}\Vert _{H}^2 - 4d_0^2\), where \(d_0\) is as in (19);

(b):

\(2\langle B(y_k-y_{k-1}),\gamma _k-\gamma _{k-1} \rangle \ge \Vert y_k-y_{k-1}\Vert _{H}^2-\Vert y_{k-1}-y_{k-2}\Vert _{H}^2\), for every\(k\ge 2\).

Proof

(a) Consider \(z_0,z_1\) and \({{\tilde{z}}}_1\) as in (18), and let an arbitrary \(z^{*}:=(x^*,y^*,\gamma ^*)\in \varOmega ^{*}\) (see Assumpiton 1). Note that, in view of the definition of \(d_0\) in (19), in order to establish (a), it is sufficient to prove that

$$\begin{aligned} \varTheta :=\Vert y_1-y_{0}\Vert _{H}^2-2\langle {B(y_1-y_{0})},{\gamma _1-\gamma _{0}}\rangle \le 4 \Vert z^{*}-z_{0}\Vert ^{2}_{M}, \end{aligned}$$
(53)

where M is as in (16). Let us then show (53). From the definitions of M and \(\{z_k\}\), we have

$$\begin{aligned} \left\| z_1-z_0\right\| ^{2}_{M}&=\frac{1}{\beta }\Vert x_1-x_0\Vert ^2+\Vert y_1-y_{0}\Vert _{H+\frac{\beta }{\alpha } B^*B}^2\\&\quad +\frac{2(1-\alpha )}{\alpha }\langle {B(y_1-y_{0})},{\gamma _1-\gamma _{0}}\rangle \\&\quad +\frac{1}{\alpha \beta }\Vert \gamma _1-\gamma _{0}\Vert ^2\\&= \frac{1}{\beta }\Vert x_1-x_0\Vert ^2+\varTheta +\left\| \frac{ \sqrt{\beta }}{\sqrt{\alpha }} B(y_{1}-y_{0})+\frac{1}{\sqrt{\alpha \beta }}(\gamma _1-\gamma _{0})\right\| ^2. \end{aligned}$$

Hence, we obtain

$$\begin{aligned} \varTheta \le \left\| z_1-z_0\right\| ^{2}_{M}\le 2\left( \left\| z^{*}-z_1\right\| ^{2}_{M}+\left\| z^{*}-z_0\right\| ^{2}_{M}\right) , \end{aligned}$$
(54)

where the last inequality is due to \(\Vert z+z^{\prime }\Vert _{M}^2\le 2\left( \Vert z\Vert _{M}^2+\Vert z^{\prime }\Vert _{M}^2\right)\) for all \(z, z^{\prime }\). We will now prove that

$$\begin{aligned} \left\| z^{*}-z_1\right\| ^{2}_{M}\le \left\| z^{*}-z_0\right\| ^{2}_{M}. \end{aligned}$$
(55)

Since we have already proved that the inclusion in Proposition 1(a) holds, we have \(M(z_0-z_1) \in T(\tilde{z}_1)\) where M and T are as in (16). Thus, using that \(0 \in T(z^*)\) and T is monotone, we obtain \(\langle M(z_0-z_1),z^*- {\tilde{z}}_1 \rangle \le 0\). Hence,

$$\begin{aligned} \Vert z^{*}-z_{1}\Vert ^{2}_{M}-\Vert z^{*}-z_{0}\Vert ^{2}_{M}&=\Vert (z^{*}-{\tilde{z}}_1)+({\tilde{z}}_1-z_1)\Vert ^{2}_{M}-\Vert (z^{*}-{\tilde{z}}_1)+({\tilde{z}}_1-z_{0})\Vert ^{2}_{M}\\&= \Vert {\tilde{z}}_1-z_{1}\Vert ^{2}_{M}+2\langle M(z_{0}-z_1),z^{*}-{\tilde{z}}_1 \rangle -\Vert {\tilde{z}}_1-z_{0}\Vert ^{2}_{M}\\&\le \Vert {\tilde{z}}_1-z_{1}\Vert ^{2}_{M}-\Vert {\tilde{z}}_1-z_{0}\Vert ^{2}_{M}. \end{aligned}$$

Using (52), the inequality in (11), and the first equality in (14) (all with \(k=1\)), we have

$$\begin{aligned} \left\| {\tilde{z}}_1-z_{1}\right\| ^{2}_{M}&\le \frac{\tau _{1}}{\beta }\left\| \tilde{\gamma }_1-\gamma _{0}\right\| ^{2}+\frac{\tau _{2}}{\beta }\left\| {\tilde{x}}_1-x_{0}\right\| ^{2}+\frac{1}{\alpha ^{3}}\left\| (y_{1}-y_{0},\gamma _{1}-\gamma _{0})\right\| ^{2}_{P}, \end{aligned}$$

where P is as in (50). Now, (51) with \(k=1\) becomes

$$\begin{aligned} \Vert {\tilde{z}}_1-z_{0}\Vert _{M}^{2}\ge \frac{1}{\beta }\left\| {\tilde{x}}_{1}-x_{0}\right\| ^{2}+ \frac{1}{\alpha ^{3}}\left\| (y_{1}-y_{0},\gamma _{1}-\gamma _{0})\right\| _{N}^{2} \end{aligned}$$

where N is as in (50). Combining the last three inequalities and the fact that \(\tau _{2}<1\) (see Algorithm 1), we find

$$\begin{aligned} \nonumber \left\| z^{*}-z_{1}\right\| ^{2}_{M}-\left\| z^{*}-z_{0}\right\| ^{2}_{M}&\le \frac{\tau _{1}}{\beta }\left\| \tilde{\gamma }_{1}-\gamma _{0}\right\| ^{2}\\\nonumber&\quad +\frac{1}{\alpha ^{3}}\left( \left\| (y_{1}-y_{0},\gamma _{1}-\gamma _{0})\right\| _{P}^{2}-\left\| (y_{1}-y_{0},\gamma _{1}-\gamma _{0})\right\| _{N}^{2}\right) \\&= \frac{\tau _{1}}{\beta }\left\| \tilde{\gamma }_{1}-\gamma _{0}\right\| ^{2} - \frac{2-\alpha }{\alpha ^{2}}\left\| (y_{1}-y_{0},\gamma _{1}-\gamma _{0})\right\| _{S}^{2}, \end{aligned}$$
(56)

where the last equality is due to the fact that \(P-N=-\alpha (2-\alpha )S\), with S given in (49). The last inequality, (49) with \(k=1\) and the fact that \(\alpha \in (0,2-\tau _{1})\) yield

$$\begin{aligned} \left\| z^{*}-z_{1}\right\| ^{2}_{M}-\left\| z^{*}-z_{0}\right\| ^{2}_{M}\le \frac{\alpha +\tau _{1}-2}{\alpha ^{2}}\left\| (y_{1}-y_{0},\gamma _{1}-\gamma _{0})\right\| _{S}^{2}\le 0, \end{aligned}$$

which implies that (55) holds. Therefore, (a) now follows by combining (54) and (55).

(b) From the first-order optimality condition for (13) and the second relation in (14), we obtain

$$\begin{aligned} B^{*}\gamma _{j}-H(y_{j}-y_{j-1})\in \partial g(y_j) \qquad \forall \,j\ge 1. \end{aligned}$$

Hence, for every \(k\ge 2\), using the above inclusion with \(j \leftarrow k\) and \(j \leftarrow k-1\) and the monotonicity of \(\partial g\) , we have

$$\begin{aligned} \left\langle B^*(\gamma _k-\gamma _{k-1}),y_{k}-y_{k-1}\right\rangle&\ge \left\| y_k-y_{k-1}\right\| ^{2}_{H}-\left\langle H(y_{k-1}-y_{k-2}),y_k-y_{k-1}\right\rangle \\&\ge \frac{1}{2}\left\| y_k-y_{k-1}\right\| ^{2}_{H}-\frac{1}{2}\left\| y_{k-1}-y_{k-2}\right\| ^{2}_{H}, \end{aligned}$$

where the last inequality is due to the fact that \(2\left\langle Hy,y^{\prime }\right\rangle \le \Vert y\Vert _{H}^{2}+\Vert y^{\prime }\Vert _{H}^{2}\) for all \(y, y^{\prime }\). Therefore, (b) follows trivially from the last inequality. \(\square\)

We are now ready to prove the remaining statements of Proposition 1.

Proof of the inequality in Proposition 1(a) Using (52) and the first relation in (14), we have

$$\begin{aligned} \left\| {\tilde{z}}_{k}-z_{k}\right\| ^{2}_{M}&=\frac{1}{\beta }\left\| {\tilde{x}}_{k}-x_{k-1}+\beta v_{k}\right\| ^{2}+\frac{1}{\alpha ^{3}}\left\| (y_{k}-y_{k-1},\gamma _{k}-\gamma _{k-1})\right\| ^{2}_{P}\\&\le \frac{\tau _{1}}{\beta }\left\| \tilde{\gamma }_{k}-\gamma _{k-1}\right\| ^{2}+\frac{\tau _{2}}{\beta }\left\| {\tilde{x}}_{k}-x_{k-1}\right\| ^{2}+\frac{1}{\alpha ^{3}}\left\| (y_{k}-y_{k-1},\gamma _{k}-\gamma _{k-1})\right\| ^{2}_{P}, \end{aligned}$$

where the inequality is due to the second condition in (11). It follows from the last inequality, (51) and the fact that \({\sigma }\ge \tau _{2}\) [see (20)] that

$$\begin{aligned} \sigma \Vert \tilde{z}_{k}-z_{k-1}\Vert _{M}^2- \Vert {\tilde{z}}_k-z_{k}\Vert _{M}^2\ge a_{k} \end{aligned}$$
(57)

where

$$\begin{aligned} a_{k}:= & {} -\frac{\tau _{1}}{\beta }\left\| \tilde{\gamma }_{k}-\gamma _{k-1}\right\| ^{2}+\frac{1}{\alpha ^{3}}\left( \sigma \left\| (y_{k}-y_{k-1},\gamma _{k}-\gamma _{k-1})\right\| ^{2}_{N}-\left\| (y_{k}-y_{k-1},\gamma _{k}\right. \right. \\&\left. \left. -\gamma _{k-1})\right\| ^{2}_{P}\right) . \end{aligned}$$

We will show that \(a_{k}\ge \eta _{k}-\eta _{k-1}\), where the sequence \(\{\eta _{k}\}\) is defined in (21). From (49), we find

$$\begin{aligned} \frac{\tau _{1}}{\beta }\left\| \tilde{\gamma }_{k}-\gamma _{k-1}\right\| ^{2}= \frac{1}{\alpha ^{3}}\left\| (y_{k}-y_{k-1},\gamma _{k}-\gamma _{k-1})\right\| ^{2}_{\alpha \tau _{1} S}, \end{aligned}$$

which, combined with definition of \(a_k\), yields

$$\begin{aligned} a_{k}= \frac{1}{\alpha ^{3}}\left\| (y_{k}-y_{k-1},\gamma _{k}-\gamma _{k-1})\right\| ^{2}_{\sigma N-\alpha \tau _1 S-P}. \end{aligned}$$

Hence, using the definitions of N, S and P in (49) and (50), we obtain

$$\begin{aligned} a_{k}=\frac{1}{\alpha ^{3}}\left( {\hat{\xi }}\beta \Vert B(y_{k}-y_{k-1})\Vert ^2+ 2\bar{\xi }\left\langle {B(y_{k}-y_{k-1})},{{\gamma }_{k}-\gamma _{k-1}}\right\rangle + \frac{\tilde{\xi }}{\beta }\Vert \gamma _{k}-\gamma _{k-1}\Vert ^{2}\right) , \end{aligned}$$
(58)

where

$$\begin{aligned} {\hat{\xi }}= & {} \sigma (1+\alpha (2-\alpha ))-\alpha \tau _{1}-1, \nonumber \\ \bar{\xi }= & {} \sigma (1+\alpha -\alpha ^{2})+(1-\tau _{1})\alpha -1, \nonumber \\ \tilde{\xi }= & {} \sigma -\alpha \tau _{1}-(1-\alpha )^{2}. \end{aligned}$$
(59)

Now, from the definition of \(\sigma\) given in (20), we obtain \({\sigma }\ge (1+\alpha \tau _{1})/(1+\alpha (2-\alpha ))\). Hence, \({\hat{\xi }}\ge 0\) and

$$\begin{aligned} \tilde{\xi }\ge \frac{1+\alpha \tau _{1}}{1+\alpha (2-\alpha )}-\alpha \tau _1 -(1-\alpha )^{2}=\frac{\alpha ^{2}(2-\tau _{1}-\alpha )(2-\alpha )}{1+\alpha (2-\alpha )}>0, \end{aligned}$$

where the last inequality is due to the fact that \(\alpha \in (0,2-\tau _{1})\). Moreover, since \(\sigma \in (0,1)\) (see (20)), we find

$$\begin{aligned} \bar{\xi }=\sigma (1+\alpha -\alpha ^{2})+\alpha -\tau _{1}\alpha -1>\sigma (1+\alpha (2-\alpha ))-\alpha \tau _{1}-1={\hat{\xi }}. \end{aligned}$$

Thus, \(\bar{\xi } >{\hat{\xi }}\ge 0\), and \(\tilde{\xi }\ge 0\). Hence, from (58), Lemma 2 and the fact that \(\bar{\xi }=\alpha ^{3}\xi\) [see (20) and (59)], it follows that

$$\begin{aligned} a_{k}\ge & {} \frac{2\bar{\xi }}{\alpha ^{3}}\left\langle {B(y_{k}-y_{k-1})},{{\gamma }_{k}-\gamma _{k-1}}\right\rangle = 2\xi \left\langle {B(y_{k}-y_{k-1})},{{\gamma }_{k}-\gamma _{k-1}}\right\rangle \\\ge & {} {\left\{ \begin{array}{ll} \xi \left\| y_{1}-y_{0}\right\| _{H}^{2}- 4\xi d_{0}^{2}, &{} k=1, \\ \xi \left\| y_{k}-y_{k-1}\right\| _{H}^{2}-\xi \left\| y_{k-1}-y_{k-2}\right\| _{H}^{2}, &{} k\ge 2, \end{array}\right. } \end{aligned}$$

which, combined with the definitions of \(\{\eta _{k}\}\) in (21) yields \(a_{k}\ge \eta _{k}-\eta _{k-1}\) for every \(k\ge 1\). Hence, the desired inequality now follows from (57).

Proof of Proposition 1(b) First, for every \(z^*=(x^*,y^*,\gamma ^*)\in \varOmega ^*\), we have

$$\begin{aligned}&\Vert z^*-z_{k}\Vert ^{2}_{M}-\Vert z^*-z_{k-1}\Vert ^{2}_{M} \\&\quad = \Vert (z^*-{\tilde{z}}_k)+({\tilde{z}}_k-z_k)\Vert ^{2}_{M}-\Vert (z^*-{\tilde{z}}_k)+({\tilde{z}}_k-z_{k-1})\Vert ^{2}_{M}\\&\quad = \Vert {\tilde{z}}_k-z_{k}\Vert ^{2}_{M}-\Vert {\tilde{z}}_k-z_{k-1}\Vert ^{2}_{M}+2\langle M(z_{k-1}-z_k),z^*-{\tilde{z}}_k \rangle . \end{aligned}$$

Now, since \(M(z_{k-1}-z_k)\in T(\tilde{z}_k)\) (see (22)), \(0 \in T(z^*)\), and T is monotone, we trivially obtain \(\langle M(z_{k-1}-z_k),{\tilde{z}}_k-z^* \rangle \ge 0\). Therefore, combining the last two inequalities and (22), we obtain

$$\begin{aligned} \Vert z^{*}-z_{k}\Vert ^{2}_{M}-\Vert z^{*}-z_{k-1}\Vert ^{2}_{M}\le \eta _{k-1}-\eta _{k}-(1-\sigma )\Vert {\tilde{z}}_k-z_{k-1}\Vert ^{2}_{M}, \end{aligned}$$

which is equivalent to the desired inequality.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adona, V.A., Gonçalves, M.L.N. & Melo, J.G. An inexact proximal generalized alternating direction method of multipliers. Comput Optim Appl 76, 621–647 (2020). https://doi.org/10.1007/s10589-020-00191-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00191-1

Keywords

Mathematics Subject Classification

Navigation