Skip to main content
Log in

Nonlinear optimal control: a numerical scheme based on occupation measures and interval analysis

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper presents an approximation scheme for optimal control problems using finite-dimensional linear programs and interval analysis. This is done in two parts. Following Vinter approach (SIAM J Control Optim 31(2):518–538, 1993) and using occupation measures, the optimal control problem is written into a linear programming problem of infinite-dimension (weak formulation). Thanks to Interval arithmetic, we provide a relaxation of this infinite-dimensional linear programming problem by a finite dimensional linear programming problem. A proof that the optimal value of the finite dimensional linear programming problem is a lower bound to the optimal value of the control problem is given. Moreover, according to the fineness of the discretization and the size of the chosen test function family, obtained optimal values of each finite dimensional linear programming problem form a sequence of lower bounds which converges to the optimal value of the initial optimal control problem. Examples will illustrate the principle of the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. High performance computing cluster of leria.: Slurm/debian cluster of 27 nodes(700 logical CPU, 2 nvidia GPU tesla k20m, 1 nvidia P100 GPU), 120TB of beegfs scratch storage (2018)

  2. Akian, M., Gaubert, S., Lakhoua, A.: The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis. SIAM J. Control Optim. 47(2), 817–848 (2008). https://doi.org/10.1137/060655286

    Article  MathSciNet  MATH  Google Scholar 

  3. Balder, E.: Control and optimisation: the linear treatment of nonlinear problems (J. E. Rubio). SIAM Rev. 30(4), 663–663 (1988). https://doi.org/10.1137/1030153

    Article  Google Scholar 

  4. Bellman, R.: On the theory of dynamic programming. Proc. Natl. Acad. Sci. 38(8), 716–719 (1952)

    Article  MathSciNet  Google Scholar 

  5. Betts, J.: Practical methods for optimal control and estimation using nonlinear programming, 2nd edn. Society for Industrial and Applied Mathematics (2010). https://doi.org/10.1137/1.9780898718577

  6. Clarke, F.: Functional Analysis. Calculus of Variations and Optimal Control. Graduate Texts in Mathematics. Springer, London (2013)

    Book  Google Scholar 

  7. Crandall, M.G., Evans, L.C., Lions, P.L.: Some properties of viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 282(2), 487–502 (1984)

    Article  MathSciNet  Google Scholar 

  8. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. New Ser. 27(1), 1–67 (1992). https://doi.org/10.1090/S0273-0979-1992-00266-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    Article  MathSciNet  Google Scholar 

  10. Crandall, M.G., Lions, P.L.: Two approximations of solutions of Hamilton–Jacobi equations. Math. Comput. 43(167), 1–19 (1984)

    Article  MathSciNet  Google Scholar 

  11. Delanoue, N., Lhommeau, M., Lucidarme, P.: Numerical enclosures of the optimal cost of the kantorovitch’s mass transportation problem. Comput. Optim. Appl. 1, 1–19 (2015). https://doi.org/10.1007/s10589-015-9794-9

    Article  MATH  Google Scholar 

  12. Evans, L.: An Introduction to Mathematical Optimal Control Theory, version 0.2. http://math.berkeley.edu/~evans/

  13. Falcone, M.: Numerical solution of dynamic programming equations: optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, Basel (1997)

    Google Scholar 

  14. Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton–Jacobi Equations. SIAM (2014). https://hal.inria.fr/hal-00916055

  15. Filib++ interval library. http://www2.math.uni-wuppertal.de/~xsc/software/filib.html

  16. Gaitsgory, V., Rossomakhine, S.: Linear programming approach to deterministic long run average problems of optimal control. SIAM J. Control Optim. 44(6), 2006–2037 (2006). https://doi.org/10.1137/040616802

    Article  MathSciNet  MATH  Google Scholar 

  17. Gaitsgory, V., Rossomakhine, S.: Averaging and linear programming in some singularly perturbed problems of optimal control. Appl. Math. Optim. 71(2), 195–276 (2015). https://doi.org/10.1007/s00245-014-9257-1

    Article  MathSciNet  MATH  Google Scholar 

  18. Glpk: Gnu linear programming kit. http://www.gnu.org/software/glpk/

  19. The gnu multiple precision arithmetic library. https://gmplib.org/

  20. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Lecture Notes in Economic and Mathematical Systems. Springer, Berlin (1993)

  21. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I (2nd Revised. Ed.): Nonstiff Problems. Springer, New York (1993)

  22. Henrion, D., Lasserre, J.B., Savorgnan, C.: Nonlinear optimal control synthesis via occupation measures. In: 47th IEEE Conference on Decision and Control, pp. 4749–4754 (2008). https://doi.org/10.1109/CDC.2008.4739136

  23. Hernández-Hernández, D., Hernández-Lerma, O., Taksar, M.: The linear programming approach to deterministic optimal control problems. Appl. Math. 24(1), 17–33 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Hernández-Lerma, O., Lasserre, J.B.: Approximation schemes for infinite linear programs. SIAM J. Optim. 8(4), 973–988 (1998). https://doi.org/10.1137/S1052623497315768

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, C.S., Wang, S., Teo, K.: Solving Hamilton–Jacobi–Bellman equations by a modified method of characteristics. Nonlinear Anal. Theory Methods Appl. 40(1–8), 279–293 (2000)

    Article  MathSciNet  Google Scholar 

  26. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis: With Examples in Parameter and State Estimation. Robust Control and Robotics. Springer, London (2012)

    MATH  Google Scholar 

  27. Junge, O., Osinga, H.M.: A set oriented approach to global optimal control. ESAIM: Control Optim. Calc. Var. 10(2), 259–270 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Lasserre, J.: Moments. Positive Polynomials and Their Applications: Imperial College Press Optimization Series. Imperial College Press, London (2010)

    Google Scholar 

  29. Lasserre, J.B., Henrion, D., Prieur, C., Trélat, E.: Nonlinear optimal control via occupation measures and lmi-relaxations. SIAM J. Control Optim. 47(4), 1643–1666 (2008). https://doi.org/10.1137/070685051

    Article  MathSciNet  MATH  Google Scholar 

  30. Moore, R.: Interval Analysis. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Upper Saddle River (1966)

    Google Scholar 

  31. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge Middle East Library, Cambridge (1990)

    MATH  Google Scholar 

  32. Rubio, J.: Control and Optimization: The Linear Treatment of Nonlinear Problems. Nonlinear Science. Manchester University Press, Manchester (1986)

    MATH  Google Scholar 

  33. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  34. Villani, C.: Topics in Optimal Transportation: Graduate Studies in Mathematics. American Mathematical Society, Providence (2003)

    Book  Google Scholar 

  35. Vinter, R.: Convex duality and nonlinear optimal control. SIAM J. Control Optim. 31(2), 518–538 (1993). https://doi.org/10.1137/0331024

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, S., Gao, F., Teo, K.: An upwind finite-difference method for the approximation of viscosity solutions to Hamilton–Jacobi–Bellman equations. IMA J. Math. Control Inf. 17(2), 167–178 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Delanoue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delanoue, N., Lhommeau, M. & Lagrange, S. Nonlinear optimal control: a numerical scheme based on occupation measures and interval analysis. Comput Optim Appl 77, 307–334 (2020). https://doi.org/10.1007/s10589-020-00198-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00198-8

Keywords

Navigation