Abstract
This paper presents an approximation scheme for optimal control problems using finite-dimensional linear programs and interval analysis. This is done in two parts. Following Vinter approach (SIAM J Control Optim 31(2):518–538, 1993) and using occupation measures, the optimal control problem is written into a linear programming problem of infinite-dimension (weak formulation). Thanks to Interval arithmetic, we provide a relaxation of this infinite-dimensional linear programming problem by a finite dimensional linear programming problem. A proof that the optimal value of the finite dimensional linear programming problem is a lower bound to the optimal value of the control problem is given. Moreover, according to the fineness of the discretization and the size of the chosen test function family, obtained optimal values of each finite dimensional linear programming problem form a sequence of lower bounds which converges to the optimal value of the initial optimal control problem. Examples will illustrate the principle of the methodology.
Similar content being viewed by others
References
High performance computing cluster of leria.: Slurm/debian cluster of 27 nodes(700 logical CPU, 2 nvidia GPU tesla k20m, 1 nvidia P100 GPU), 120TB of beegfs scratch storage (2018)
Akian, M., Gaubert, S., Lakhoua, A.: The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis. SIAM J. Control Optim. 47(2), 817–848 (2008). https://doi.org/10.1137/060655286
Balder, E.: Control and optimisation: the linear treatment of nonlinear problems (J. E. Rubio). SIAM Rev. 30(4), 663–663 (1988). https://doi.org/10.1137/1030153
Bellman, R.: On the theory of dynamic programming. Proc. Natl. Acad. Sci. 38(8), 716–719 (1952)
Betts, J.: Practical methods for optimal control and estimation using nonlinear programming, 2nd edn. Society for Industrial and Applied Mathematics (2010). https://doi.org/10.1137/1.9780898718577
Clarke, F.: Functional Analysis. Calculus of Variations and Optimal Control. Graduate Texts in Mathematics. Springer, London (2013)
Crandall, M.G., Evans, L.C., Lions, P.L.: Some properties of viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 282(2), 487–502 (1984)
Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. New Ser. 27(1), 1–67 (1992). https://doi.org/10.1090/S0273-0979-1992-00266-5
Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)
Crandall, M.G., Lions, P.L.: Two approximations of solutions of Hamilton–Jacobi equations. Math. Comput. 43(167), 1–19 (1984)
Delanoue, N., Lhommeau, M., Lucidarme, P.: Numerical enclosures of the optimal cost of the kantorovitch’s mass transportation problem. Comput. Optim. Appl. 1, 1–19 (2015). https://doi.org/10.1007/s10589-015-9794-9
Evans, L.: An Introduction to Mathematical Optimal Control Theory, version 0.2. http://math.berkeley.edu/~evans/
Falcone, M.: Numerical solution of dynamic programming equations: optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, Basel (1997)
Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton–Jacobi Equations. SIAM (2014). https://hal.inria.fr/hal-00916055
Filib++ interval library. http://www2.math.uni-wuppertal.de/~xsc/software/filib.html
Gaitsgory, V., Rossomakhine, S.: Linear programming approach to deterministic long run average problems of optimal control. SIAM J. Control Optim. 44(6), 2006–2037 (2006). https://doi.org/10.1137/040616802
Gaitsgory, V., Rossomakhine, S.: Averaging and linear programming in some singularly perturbed problems of optimal control. Appl. Math. Optim. 71(2), 195–276 (2015). https://doi.org/10.1007/s00245-014-9257-1
Glpk: Gnu linear programming kit. http://www.gnu.org/software/glpk/
The gnu multiple precision arithmetic library. https://gmplib.org/
Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Lecture Notes in Economic and Mathematical Systems. Springer, Berlin (1993)
Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I (2nd Revised. Ed.): Nonstiff Problems. Springer, New York (1993)
Henrion, D., Lasserre, J.B., Savorgnan, C.: Nonlinear optimal control synthesis via occupation measures. In: 47th IEEE Conference on Decision and Control, pp. 4749–4754 (2008). https://doi.org/10.1109/CDC.2008.4739136
Hernández-Hernández, D., Hernández-Lerma, O., Taksar, M.: The linear programming approach to deterministic optimal control problems. Appl. Math. 24(1), 17–33 (1996)
Hernández-Lerma, O., Lasserre, J.B.: Approximation schemes for infinite linear programs. SIAM J. Optim. 8(4), 973–988 (1998). https://doi.org/10.1137/S1052623497315768
Huang, C.S., Wang, S., Teo, K.: Solving Hamilton–Jacobi–Bellman equations by a modified method of characteristics. Nonlinear Anal. Theory Methods Appl. 40(1–8), 279–293 (2000)
Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis: With Examples in Parameter and State Estimation. Robust Control and Robotics. Springer, London (2012)
Junge, O., Osinga, H.M.: A set oriented approach to global optimal control. ESAIM: Control Optim. Calc. Var. 10(2), 259–270 (2004)
Lasserre, J.: Moments. Positive Polynomials and Their Applications: Imperial College Press Optimization Series. Imperial College Press, London (2010)
Lasserre, J.B., Henrion, D., Prieur, C., Trélat, E.: Nonlinear optimal control via occupation measures and lmi-relaxations. SIAM J. Control Optim. 47(4), 1643–1666 (2008). https://doi.org/10.1137/070685051
Moore, R.: Interval Analysis. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Upper Saddle River (1966)
Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge Middle East Library, Cambridge (1990)
Rubio, J.: Control and Optimization: The Linear Treatment of Nonlinear Problems. Nonlinear Science. Manchester University Press, Manchester (1986)
Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)
Villani, C.: Topics in Optimal Transportation: Graduate Studies in Mathematics. American Mathematical Society, Providence (2003)
Vinter, R.: Convex duality and nonlinear optimal control. SIAM J. Control Optim. 31(2), 518–538 (1993). https://doi.org/10.1137/0331024
Wang, S., Gao, F., Teo, K.: An upwind finite-difference method for the approximation of viscosity solutions to Hamilton–Jacobi–Bellman equations. IMA J. Math. Control Inf. 17(2), 167–178 (2000)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Delanoue, N., Lhommeau, M. & Lagrange, S. Nonlinear optimal control: a numerical scheme based on occupation measures and interval analysis. Comput Optim Appl 77, 307–334 (2020). https://doi.org/10.1007/s10589-020-00198-8
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-020-00198-8