Abstract
Particle Swarm Optimization (PSO) is a population-based metaheuristic belonging to the class of Swarm Intelligence (SI) algorithms. Nowadays, its effectiveness on many hard problems is no longer to be proven. Nevertheless, it is known to be strongly sensitive on the choice of its settings and weak for local search. In this paper, we propose a new algorithm, called QUAntum Particle Swarm Optimization (QUAPSO) based on quantum superposition to set the velocity PSO parameters, simplifying the settings of the algorithm. Another improvement, inspired by Kangaroo Algorithm (KA), was added to PSO in order to optimize its efficiency in local search. QUAPSO was compared with a set of six well-known algorithms from the literature (two parameter sets of classical PSO, KA, Differential Evolution, Simulated Annealing Particle Swarm Optimization, Bat Algorithm and Simulated Annealing Gaussian Bat Algorithm). The experimental results show that QUAPSO outperforms the competing algorithms on a set of 30 test functions.












Similar content being viewed by others
References
Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Proceedings of NATO Advanced Workshop on Robots and Biological Systems, Vol. 120, pp. 703–712 (1989)
Kennedy, J., Eberhart, R.: Particle swarm optimization, In: Proceedings of IEEE International Conference on Neural Networks, Vol. 4, pp. 1942–1948 (1995)
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of 1998 IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)
Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, M.: Optimal parameter regions and the time-dependence of control parameter values for the particle swarm optimization algorithm. Swarm Evol. Comput. 41, 20–35 (2018)
Zhang, L., Wu, L.: A robust hybrid restarted simulated annealing particle swarm optimization technique. Adv. Comput. Sci. Its Appl. 1(1), 5–8 (2012)
Xi-Huai, W., Jun-Jun, L.: Hybrid particle swarm optimization with simulated annealing. In: Proceedings of 2004 International Conference on Machine Learning and Cybernetics, Vol. 4, pp. 2402–2405 (2004)
Houssein, E.H., Gad, A.G., Hussain, K., Suganthan, P.N.: Major Advances in Particle Swarm Optimization: Theory, Analysis, and Application, Swarm and Evolutionary Computation, Vol. 64, 100905 (2021)
Clerc, M.: Particle Swarm Optimization. John Wiley & Sons (2010)
Nobile, M.S., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., Pasi, G.: Fuzzy self-tuning PSO: a settings-free algorithm for global optimization. Swarm Evol. Comput. 39, 70–85 (2018)
Hu, M., Wu, T., Weir, J.D.: An adaptive Particle Swarm Optimization with multiple adaptive methods. IEEE Trans. Evol. Comput. 17(5), 705–720 (2013)
Bakwad, K.M., Pattnaik, S.S., Sohi, B.S., Devi, S., Panigrahi, B.K., Das, S., Lohokare, M.R.: Hybrid Bacterial Foraging with parameter free PSO. In: Proceedings of 2009 World Congress on Nature & Biologically Inspired Computing, pp. 1077–1081 (2009)
Sun, J., Feng, B., Xu, W.B.: Particle swarm optimization with particles having quantum behavior. In: Proceedings of 2004 Congress on Evolutionary Computation, pp. 325–331 (2004)
Sun, J., Xu, W., Feng, B.: Adaptive parameter control for quantum-behaved particle swarm optimization on individual level. In: Proceedings of 2005 IEEE International Conference on Systems, Man and Cybernetics, Vol. 4, pp. 3049–3054 (2005)
Xi, M., Wu, X., Sheng, X., Sun, J., Xu, W.: Improved quantum-behaved particle swarm optimization with local search strategy. J. Algorithms Comput. Technol. 11(1), 3–12 (2016)
Liu, J., Sun, J., Xu, W.: Improving Quantum-Behaved Particle Swarm Optimization by simulated annealing. In: Proceedings of 2006 International Conference on Intelligent Computing, Vol. 4115, pp. 130–136 (2006)
Sun, J., Wu, X., Palade, V., Fang, W., Lai, C.H., Xu, W.: Convergence analysis and improvements of quantum-behaved particle swarm optimization. Inf. Sci. 193, 81–103 (2012)
Li, S., Wang, R., Hu, W., Sun, J.: A new QPSO based BP neural network for face detection. Fuzzy Inf. Eng. 40, 355–363 (2007)
Sun, J., Feng, B., Xu, W.B.: QPSO-based QoS multicast routing algorithm. In: Proceedings of 11th International Conference, SEAL 2017, pp. 261–268 (2017)
Xu, X., Shan, D., Wang, G., Jiang, X.: Multimodal medical image fusion using PCNN optimized by the QPSO algorithm. Appl. Soft Comput. 46, 588–595 (2016)
Djemame, S., Batouche, M., Oulhadj, H., Siarry, P.: Solving reverse emergence with quantum PSO application to image processing. Soft Comput. 1–15 (2018)
Rakitianskaia, A.S., Engelbrecht, A.P.: Training feedforward neural networks with dynamic particle swarm optimization. Swarm Intell. 6(3), 233–270 (2012)
Fernandes, F.E., Yen, G.G.: Particle swarm optimization of deep neural networks architectures for image classification. Swarm Evol. Comput. 49, 62–74 (2019)
Gandelli, A., Grimaccia, F., Mussetta, M., Pirinoli, P., Zich, R.E.: Development and validation of different hybridization strategies between GA and PSO. In: Proceedings of 2007 IEEE Congress on Evolutionary Computation, pp. 2782–2787 (2007)
Bahrepour, M., Mahdipour, E., Cheloi, R., Yaghoobi, M.: SUPER-SAPSO: a new SA-based PSO algorithm. Adv. Intell. Soft Comput. 58, 423–430 (2009)
Jeong, S., Hasegawa, S., Shimoyama, K., Obayashi, S.: Development and investigation of efficient GA/PSO-HYBRID algorithm applicable to real-world design optimization. IEEE Comput. Intell. Mag. 4(3), 33–44 (2009)
He, X., Ding, W.J., Yang, X.S.: Bat algorithm based on simulated annealing and Gaussian perturbations. Neural Comput. Appl. 25(2), 459–468 (2014)
Wang, S., Zhang, Y., Dong, Z., Du, S., Ji, G., Yan, J., Yang, J., Wang, Q., Feng, C., Phillips, P.: Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection. Int. J. Imaging Syst. Technol. 25(2), 153–164 (2015)
Dong, J., Zhang, L., Xiao, T.: A hybrid PSO/SA algorithm for bi-criteria stochastic line balancing with flexible task times and zoning constraints. J. Intell. Manuf. 29(4), 737–751 (2018)
Deb, K., Padhye, N.: Enhancing performance of particle swarm optimization through an algorithmic link with genetic algorithms. Comput. Optim. Appl. 57, 761–794 (2014)
Dhadwal, M.K., Jung, S.N., Kim, C.J.: Advanced particle swarm assisted genetic algorithm for constrained optimization problems. Comput. Optim. Appl. 58, 781–806 (2014)
Fleury, G.: Méthodes stochastiques et déterministes pour les problèmes NP-difficiles. Ph.D. thesis in applied science, University of Clermont-Ferrand II, France (1993)
Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption. Swarm Intell. 9(1), 1–22 (2017)
Yousri, D., Allam, D., Eteiba, M.B., Suganthan, P.N.: Chaotic heterogeneous comprehensive learning Particle Swarm Optimizer variants for permanent magnet synchronous motor models parameters estimation. Iranian J. Sci. Technol., Trans. Electr. Eng. 44, 1299–1318 (2020)
Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Metaheuristics for Hard Optimization: Methods and Case Studies. Springer-Verlag, Berlin Heidelberg (2006)
Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: Inertia weight control strategies for particle swarm optimization. Swarm Intell. 10(4), 267–305 (2016)
Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm variants: standardized convergence analysis. Swarm Intell. 9(2–3), 177–203 (2015)
Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)
Clerc, M.: Stagnation analysis in particle swarm optimization or what happens when nothing happens. http://hal.archives-ouvertes.fr/hal-00122031 (2006)
Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. Trans. Evol. Comput. 13(2), 398–417 (2009)
Ronkkonen, J., Kukkonnen, S., Price, K.V.: Real-parameter optimization with differential evolution. In: Proceedings of 2005 IEEE Congress on Evolutionary Computation, Vol. 1, pp. 506–513 (2005)
Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)
Neumann, G., Swan, J., Harman, M., Clark, J.A.: The executable experimental template pattern for the systematic comparison of metaheuristics: Extended Abstract. In: Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation (GECCO Comp ’14), pp. 1427–1430 (2014)
Engelbrecht, A.P.: Computational Intelligence: An Introduction. John Wiley & Sons (2007)
Peer, E.S., van den Bergh, F., Engelbrecht, A.P.: Using neighbourhoods with the guaranteed convergence PSO. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03
Lynn, N., Ali, M.Z., Suganthan, P.N.: Population topologies for particle swarm optimization and differential evolution. Swarm Evol. Comput. 39, 24–35 (2018)
Kennedy, J.: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of 1999 IEEE Congress on Evolutionary Computation, Vol. 3, pp. 1931–1938 (1999)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The data that support the findings of this study are available from the corresponding author upon request.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Flori, A., Oulhadj, H. & Siarry, P. QUAntum Particle Swarm Optimization: an auto-adaptive PSO for local and global optimization. Comput Optim Appl 82, 525–559 (2022). https://doi.org/10.1007/s10589-022-00362-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-022-00362-2