Skip to main content
Log in

DC Semidefinite programming and cone constrained DC optimization I: theory

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this two-part study, we discuss possible extensions of the main ideas and methods of constrained DC optimization to the case of nonlinear semidefinite programming problems and more general nonlinear cone constrained optimization problems. In the first paper, we analyse two different approaches to the definition of DC matrix-valued functions (namely, order-theoretic and componentwise), study some properties of convex and DC matrix-valued mappings and demonstrate how to compute DC decompositions of some nonlinear semidefinite constraints appearing in applications. We also compute a DC decomposition of the maximal eigenvalue of a DC matrix-valued function. This DC decomposition can be used to reformulate DC semidefinite constraints as DC inequality constrains. Finally, we study local optimality conditions for general cone constrained DC optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  2. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. Analysis, Algorithms, and Engineering Applications. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  4. Bianchi, G., Colesanti, A., Pucci, C.: On the second differentiability of convex surfaces. Geom. Dedicata. 60, 39–48 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  7. Canelas, A., Carrasco, M., López, J.: A feasible direction algorithm for nonlinear second-order cone programs. Optim. Meth. Softw. 34, 1322–1341 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Correa, R., López, M.A., Pérez-Aros, P.: Necessary and sufficient optimality conditions in DC semi-infinite programming. SIAM J. Optim. 31, 837–865 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Oliveira, W.: Proximal bundle methods for nonsmooth DC programming. J. Glob. Optim. 75, 523–563 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Oliveira, W., Tcheou, M.P.: An inertial algorithm for DC programming. Set-Valued Var. Anal. 27, 895–919 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dür, M., Horst, R., Locatelli, M.: Necessary and sufficient global optimality conditions for convex maximization revisited. J. Math. Anal. Appl. 217, 637–649 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Edelman, A., Tomás, A.A., Smith, T.S.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ferrer, A., Martínez-Legaz, J.E.: Improving the efficiency of DC global optimization methods by improving the DC representation of the objective function. J. Glob. Optim. 43, 513–531 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gadhi, N.A.: Necessary optimality conditions for a nonsmooth semi-infinite programming problem. J. Glob. Optim. 74, 161–168 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gaudioso, M., Giallombardo, G., Miglionico, G., Bagirov, A.M.: Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations. J. Glob. Optim. 71, 37–55 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goberna, M.A., López, M.A. (eds.): Semi-Infinite Programming: Recent Advances. Kluwer Academic Publishers, Dordrecht (2001)

  17. Goh, K.C., Safonov, M.G., Ly, J.H.: Robust synthesis via bilinear matrix inequalities. Int. J. Robust Nonlinear Control 6, 1079–1095 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goh, K.C., Safonov, M.G., Papavassilopous, G.P.: Global optimization for the Biaffine Matrix Inequality problem. J. Glob. Optim. 7, 365–380 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hartman, P.: On functions representable as a difference of convex functions. Pac. J. Math. 9, 707–713 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  20. Henrion, D., Tarbouriech, S., Šebek, M.: Rank-one LMI approach to simultaneous stabilization of linear systems. Syst. Control Lett. 38, 79–89 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hiriart-Urruty, J.B.: Generalized differentiability/duality and optimization for problems dealing with differences of convex functions. In: Ponstein, J. (ed.) Convexity and Duality in Optimization, pp. 37–70. Springer, Berlin (1985)

    Chapter  MATH  Google Scholar 

  22. Hiriart-Urruty, J.B.: From convex optimization to nonconvex optimization. Necessary and sufficient conditions for global optimality. In: Clarke, F.H., Dem’yanov, V.F., Giannessi, F. (eds.) Nonsmooth Optimization and Related Topics, pp. 219–239. Springer, Boston (1989)

    Chapter  MATH  Google Scholar 

  23. Hiriart-Urruty, J.B.: Conditions for global optimality 2. J. Glob. Optim. 13, 349–367 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Horst, R., Thoai, N.V.: DC programming: overview. J. Optim. Theory Appl. 103, 1–43 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  26. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M., Taheri, S.: Double bundle method for finding Clarke stationary points in nonsmooth DC programming. SIAM J. Optim. 28, 1892–1919 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kadison, R.V.: Order properties of bounded self-adjoint operators. Proc. Am. Math. Soc. 2, 505–510 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kanzi, N.: Necessary optimality conditions for nonsmooth semi-infinite programming problems. J. Glob. Optim. 49, 713–725 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kato, H., Fukushima, M.: An SQP-type algorithm for nonlinear second-order cone programs. Optim. Lett. 1, 129–144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kočvara, M., Stingl, M.: PENNON: a code for convex nonlinear and semidefinite programming. Optim. Methods Softw. 18, 317–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kusraev, A.G., Kutateladze, S.S.: Subdifferentials: Theory and Applications. Kluwer Academic Publishers, Dordrecht (1995)

    Book  MATH  Google Scholar 

  32. Lanckriet, G.R., Sriperumbudur, B.K.: On the convergence of the concave-convex procedure. Adv. Neural. Inf. Process. Syst. 22, 1759–1767 (2009)

    Google Scholar 

  33. Leibfritz, F.: COMP\(l_e\)ib: COnstraint Matrix-optimization Problem library—a collection of test examples for nonlinear semidefinite programs, control system design and related problems. Tech. rep., University of Trier, Department of Mathematics (2004). http://www.compleib.de

  34. Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Le Thi, H.A., Pham Dinh, T.: DC programming and DCA: thirty years of developments. Math. Program. 169, 5–68 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Le Thi, H.A., Pham Dinh, T., Muu, L.D.: Numerical solution for optimization over the efficient set by D.C. optimization algorithm. Oper. Res. Lett. 19, 117–128 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Le Thi, H.A., Pham Dinh, T., Thoai, N.V.: Combination between global and local methods for solving an optimization problem over the efficient set. Eur. J. Oper. Res. 142, 258–270 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Le Thi, H.A., Nuynh, V.N., Pham Dinh, T.: DC programming and DCA for general DC programs. In: van Do, T., Thi, H.A.L., Nguyen, N.T. (eds.) Advanced Computational Methods for Knowledge Engineering, pp. 15–35. Springer, Berlin (2014)

    Chapter  Google Scholar 

  39. Le Thi, H.A., Nuynh, V.N., Pham Dinh, T.: Convergence analysis of difference-of-convex algorithm with subanalytic data. J. Optim. Theory Appl. 179, 103–126 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lipp, T., Boyd, S.: Variations and extension of the convex-concave procedure. Optim. Eng. 17, 263–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Manton, J.H.: Optimization algorithms exploiting unitary constraints. IEEE Trans. Signal Process. 50, 635–650 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mordukhovich, B.S., Nghia, T.: Nonsmooth cone-constrained optimization with applications to semi-infinite programming. Math. Oper. Res. 39, 301–324 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  44. Niu, Y.S., Dinh, T.P.: DC programming approaches for BMI and QMI feasibility problems. In: van Do, T., Thi, H., Nguyen, N. (eds.) Advanced Computational Methods for Knowledge Engineering, pp. 37–63. Springer, Cham (2014)

    Chapter  Google Scholar 

  45. Papageorgiou, N.S.: Nonsmooth analysis on partially ordered vectors spaces: part 1—convex case. Pac. J. Math. 107, 403–458 (1983)

    Article  Google Scholar 

  46. Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to DC programming: theory, algorithms, and applications. Acta Math. Vietnamica 22, 289–355 (1997)

    MathSciNet  MATH  Google Scholar 

  47. Pham Dinh, T., Le Thi, H.A.: D.C. optimization algorithms for solving the trust region subproblem. SIAM J. Optim. 8, 476–505 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Pham Dinh, T., Le Thi, H.A.: Recent advances in DC programming and DCA. In: Nguyen, N.T., Thi, H.A.L. (eds.) Transactions on Computational Intelligence XIII, pp. 1–37. Springer, Berlin (2014)

    Google Scholar 

  49. Pham Dinh, T., Souad, E.B.: Algorithms for solving a class of nonconvex optimization problems. Methods of subgradients. In: Hiriart-Urruty, J.B. (ed.) Fermat Days 85: Mathematics for Optimization. North-Holland Mathematics Studies, vol. 129, pp. 249–271. Norht-Holland, Amsterdam (1986)

    Chapter  Google Scholar 

  50. Reemtsen, R., Rückmann, J.J. (eds.): Semi-Infinite Programming. Kluwer Academic Publishers, Dordrecht (1998)

  51. Robinson, S.M.: Regularity and stability for convex multivalued functions. Math. Oper. Res. 1, 130–143 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  52. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  53. Stingl, M.: On the solution of nonlinear semidefinite programs by augmented Lagrangian methods. Ph.D. thesis, Institute of Applied Mathematics II, Friedrech-Alexander University of Erlangen-Nuremberg, Erlangen, Germany (2006)

  54. Strekalovsky, A.S.: On the problem of the global extremum. Sov. Math. Dokl. 35, 194–198 (1987)

    Google Scholar 

  55. Strekalovsky, A.S.: Global optimality conditions for nonconvex optimization. J. Glob. Optim. 12, 415–434 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  56. Strekalovsky, A.S.: Local search for nonsmooth DC optimization with DC equality and inequality constraints. In: Bagirov, A.M., Gaudioso, M., Karmitsa, N., Mäkelä, M.M., Taheri, S. (eds.) Numerical Nonsmooth Optimization. State of the Art Algorithms, pp. 229–262. Springer, Cham (2020)

    Chapter  Google Scholar 

  57. Strekalovsky, A.S.: On a global search in D.C. optimization problems. In: Jaćimović, M., Khachay, M., Malkova, V., Posypkin, M. (eds.) Optimization and Applications. OPTIMA 2019. Communications in Computer and Information Science, pp. 222–236. Springer, Cham (2020)

    MATH  Google Scholar 

  58. Strekalovsky, A.S.: On global optimality conditions for D.C. minimization problems with D.C. constraints. J. Appl. Numer. Optim. 3, 175–196 (2021)

    Google Scholar 

  59. Thera, M.: Subdifferential calculus for convex operators. J. Math. Anal. Appl. 80, 78–91 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  60. Todd, M.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  61. Tor, A.H., Bagirov, A., Karasözen, B.: Aggregate codifferential method for nonsmooth DC optimization. J. Comput. Appl. Math. 259, 851–867 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  62. Tung, L.T.: Karush–Kuhn–Tucker optimality conditions for nonsmooth multiobjective semidefinite and semi-infinite programming. J. Appl. Numer. Optim. 1, 63–75 (2019)

    Google Scholar 

  63. Tuy, H.: A general deterministic approach to global optimization via D.C. programming. In: Hiriart-Urruty, J.B. (ed.) Fermat Days 85: Mathematics for Optimization. North-Holland Mathematics Studies, vol. 129, pp. 273–303. Norht-Holland, Amsterdam (1986)

    Chapter  Google Scholar 

  64. Tuy, H.: Convex Analysis and Global Optimization. Kluwer Academic Publishers, Dordrecht (1998)

    Book  MATH  Google Scholar 

  65. Tuy, H.: On global optimality conditions and cutting plane algorithms. J. Optim. Theory Appl. 118, 201–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  66. van Ackooij, W., de Oliveira, W.: Non-smooth DC-constrained optimization: constraint qualification and minimizing methodologies. Optim. Methods Softw. 34, 890–920 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  67. van Ackooij, W., de Oliveira, W.: Nonsmooth and nonconvex optimization via approximate difference-of-convex decompositions. J. Optim. Theory Appl. 182, 49–80 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  68. van Ackooij, W., de Oliveira, W.: Addendum to the paper “Nonsmooth DC-constrained optimization: constraint qualifications and minimizing methodologies” (2020). https://www.researchgate.net/publication/348182693_Addendum_IDCA.pdf

  69. van Ackooij, W., Demassey, S., Javal, P., Morais, H., de Oliveira, W., Swaminathan, B.: A bundle method for nonsmooth dc programming with application to chance-constrained problems. Comput. Optim. Appl. 78, 451–490 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  70. Yamashita, H., Yabe, H.: A primal-dual interior point method for nonlinear optimization over second-order cones. Optim. Methods Softw. 24, 407–426 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  71. Yamashita, H., Yabe, H.: A survey of numerical methods for nonlinear semidefinite programming. J. Oper. Res. Soc. Jpn. 58, 24–60 (2015)

    MathSciNet  MATH  Google Scholar 

  72. Yuille, A.L., Rangarajan, A.: The concave-convex procedure. Neural Comput. 15, 915–936 (2003)

    Article  MATH  Google Scholar 

  73. Zhang, Q.: A new necessary and sufficient global optimality condition for canonical DC problems. J. Glob. Optim. 55, 559–577 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  74. Zheng, X.Y., Yang, X.: Lagrange multipliers in nonsmooth semi-infinite optimization problems. Math. Oper. Res. 32, 168–181 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is sincerely grateful to the anonymous referees and the Coordinating Editor for carefully reading the paper and providing many thoughtful comments and suggestions that helped to significantly improve the overall quality of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Dolgopolik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was performed in IPME RAS and supported by the Russian Science Foundation (Grant No. 20-71-10032).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgopolik, M.V. DC Semidefinite programming and cone constrained DC optimization I: theory. Comput Optim Appl 82, 649–671 (2022). https://doi.org/10.1007/s10589-022-00374-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-022-00374-y

Keywords

Mathematics Subject Classification

Navigation