Skip to main content
Log in

Design of a heuristic algorithm for the generalized multi-objective set covering problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Set covering optimization problems (SCPs) are important and of broad interest because of their extensive applications in the real world. This study addresses the generalized multi-objective SCP (GMOSCP), which is an augmentation of the well-known multi-objective SCP problem. A mathematically driven heuristic algorithm, which uses a branching approach of the feasible region to approximate the Pareto set of the GMOSCP, is proposed. The algorithm consists of a number of components including an initial stage, a constructive stage, and an improvement stage. Each of these stages contributes significantly to the performance of the algorithm. In the initial stage, we use an achievement scalarization approach to scalarize the objective vector of the GMOSCP, which uses a reference point and a combination of weighted \(l_1\) and \(l_\infty\) norms of the objective function vector. Uniformly distributed weight vectors, defined with respect to this reference point, support the constructive stage to produce more widely and uniformly distributed Pareto set approximations. The constructive stage identifies feasible solutions to the problem based on a lexicographic set of selection rules. The improvement stage reduces the total cost of selected feasible solutions, which benefits the convergence of the approximations. We propose multiple cost-efficient rules in the constructive stage and investigate how they affect approximating the Pareto set. We used a diverse set of GMOSCP instances with different parameter settings for the computational experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

We have used two sets of data sets. The first set of data used in this study has been previously published. This set of data has also been used in our citations 13,35,37,53. The data set can be accessed using the following link https://github.com/vOptSolver/vOptLib/blob/master/SCP/readme.md. We have described the procedure for generating the second set of data in the manuscript.

References

  1. Alsheddy, A., Tsang, E.E.: Guided pareto local search based frameworks for biobjective optimization. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)

  2. Bandara, D., Mayorga, M., McLay, M.L.: Optimal dispatching strategies for emergency vehicles to increase patient survivability. Int. J. Oper. Res. 15(2), 195–214 (2012)

    Article  MathSciNet  Google Scholar 

  3. Bettinelli, A., Ceselli, A., Righini, G.: A branch-and-price algorithm for the multi-depot heterogeneous-fleet pickup and delivery problem with soft time windows. Math. Program. Comput. 6(2), 171–197 (2014)

    Article  MathSciNet  Google Scholar 

  4. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MathSciNet  Google Scholar 

  5. Czyzżak, P., Jaszkiewicz, A.: Pareto simulated annealing-a metaheuristic technique for multiple-objective combinatorial optimization. J. Multi-criteria Decis. Anal. 7(1), 34–47 (1998)

    Article  Google Scholar 

  6. Daskin, M.S., Stern, E.H.: A hierarchical objective set covering model for emergency medical service vehicle deployment. Transp. Sci. 15(2), 137–152 (1981)

    Article  MathSciNet  Google Scholar 

  7. Ehrgott, M.: Approximation algorithms for combinatorial multicriteria optimization problems. Int. Trans. Oper. Res. 7(1), 5–31 (2000)

    Article  MathSciNet  Google Scholar 

  8. Ehrgott, M.: Multicriteria Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  9. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum 22(4), 425–460 (2000)

    Article  MathSciNet  Google Scholar 

  10. Figueira, J.R., Liefooghe, A., Talbi, E.-G., Wierzbicki, A.P.: A parallel multiple reference point approach for multi-objective optimization. Eur. J. Oper. Res. 205(2), 390–400 (2010)

    Article  MathSciNet  Google Scholar 

  11. Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1–3), 23–47 (2003)

    Article  MathSciNet  Google Scholar 

  12. Florios, K., Mavrotas, G.: Generation of the exact pareto set in multi-objective traveling salesman and set covering problems. Appl. Math. Comput. 237, 1–19 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Gandibleux, X., Mezdaoui, N., Fréville, A.: A tabu search procedure to solve multiobjective combinatorial optimization problems. In: Advances in Multiple Objective and Goal Programming, pp. 291–300. Springer, New York (1997)

  14. García-Martínez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria tsp. Eur. J. Oper. Res. 180(1), 116–148 (2007)

    Article  Google Scholar 

  15. Haimes, Y.: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1(3), 296–297 (1971)

    MathSciNet  MATH  Google Scholar 

  16. Hammer, P.L., Bonates, T.O.: Logical analysis of data: an overview: from combinatorial optimization to medical applications. Ann. Oper. Res. 148(1), 203–225 (2006)

    Article  Google Scholar 

  17. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)

    Article  MathSciNet  Google Scholar 

  18. Hansen, M.P.: Use of substitute scalarizing functions to guide a local search based heuristic: the case of MOTSP. J. Heuristics 6(3), 419–431 (2000)

    Article  Google Scholar 

  19. https://github.com/vOptSolver/vOptLib/tree/master/SCP

  20. Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization. Eur. J. Oper. Res. 137(1), 50–71 (2002)

    Article  MathSciNet  Google Scholar 

  21. Jaszkiewicz, A.: Do multiple-objective metaheuristics deliver on their promises? A computational experiment on the set-covering problem. IEEE Trans. Evol. Comput. 7(2), 133–143 (2003)

    Article  MathSciNet  Google Scholar 

  22. Jaszkiewicz, A.: A comparative study of multiple-objective metaheuristics on the bi-objective set covering problem and the pareto memetic algorithm. Ann. Oper. Res. 131(1–4), 135–158 (2004)

    Article  MathSciNet  Google Scholar 

  23. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Springer (1972)

  24. Ke, L., Zhang, Q., Battiti, R.: Moea/d-aco: a multiobjective evolutionary algorithm using decomposition and antcolony. IEEE Trans. Cybern. 43(6), 1845–1859 (2013)

    Article  Google Scholar 

  25. Kohl, N., Karisch, S.E.: Airline crew rostering: problem types, modeling, and optimization. Ann. Oper. Res. 127(1–4), 223–257 (2004)

    Article  Google Scholar 

  26. Lan, G., DePuy, G.W., Whitehouse, G.E.: An effective and simple heuristic for the set covering problem. Eur. J. Oper. Res. 176(3), 1387–1403 (2007)

    Article  MathSciNet  Google Scholar 

  27. Liang, Y.-C., Lo, M.-H.: Multi-objective redundancy allocation optimization using a variable neighborhood search algorithm. J. Heuristics 16(3), 511–535 (2010)

    Article  Google Scholar 

  28. Lust, T., Teghem, J., Tuyttens, D.: Very large-scale neighborhood search for solving multiobjective combinatorial optimization problems. In: International Conference on Evolutionary Multi-Criterion Optimization, pp. 254–268. Springer (2011)

  29. Lust, T., Tuyttens, D.: Variable and large neighborhood search to solve the multiobjective set covering problem. J. Heuristics 20(2), 165–188 (2014)

    Article  Google Scholar 

  30. Marchiori, E., Steenbeek, A.: An evolutionary algorithm for large scale set covering problems with application to airline crew scheduling. In: Workshops on Real-World Applications of Evolutionary Computation, pp. 370–384. Springer (2000)

  31. Marchiori. E., Steenbeek, A.: An evolutionary algorithm for large scale set covering problems with application to airline crew scheduling. In: 41st Annual Symposium on Real-World Applications of Evolutionary Computation, Workshops, pp. 370–384. Springer, Berlin (2000)

  32. Marsten, R.E., Shepardson, F.: Exact solution of crew scheduling problems using the set partitioning model: recent successful applications. Networks 11(2), 165–177 (1981)

    Article  Google Scholar 

  33. Mavrotas, G., Florios, K.: An improved version of the augmented $\varepsilon $-constraint method (augmecon2) for finding the exact pareto set in multi-objective integer programming problems. Appl. Math. Comput. 219(18), 9652–9669 (2013)

    MathSciNet  MATH  Google Scholar 

  34. McDonnell, M.D., Possingham, H.P., Ball, I.R., Cousins, E.A.: Mathematical methods for spatially cohesive reserve design. Environ. Model. Assess. 7(2), 107–114 (2002)

    Article  Google Scholar 

  35. Nikas, A., Fountoulakis, A., Forouli, A., Doukas, H.: A robust augmented $\varepsilon $-constraint method (augmecon-r) for finding exact solutions of multi-objective linear programming problems. Oper. Res. 1–42 (2020)

  36. Paquete, L., Stützle, T.: Design and analysis of stochastic local search for the multiobjective traveling salesman problem. Comput. Oper. Res. 36(9), 2619–2631 (2009)

    Article  MathSciNet  Google Scholar 

  37. Prins, C., Prodhon, C., Calvo, R.W.: Two-phase method and Lagrangian relaxation to solve the bi-objective set covering problem. Ann. Oper. Res. 147(1), 23–41 (2006)

    Article  MathSciNet  Google Scholar 

  38. Revelle, C., Hogan, K.: The maximum reliability location problem and $\alpha $-reliablep-center problem: derivatives of the probabilistic location set covering problem. Ann. Oper. Res. 18(1), 155–173 (1989)

    Article  MathSciNet  Google Scholar 

  39. Saxena, R.R., Arora, S.R.: Exact solution of crew scheduling problems using the set partitioning model: recent successful applications. Optimization 11(2), 165–177 (1981)

    Google Scholar 

  40. Soylu, B.: Heuristic approaches for biobjective mixed 0–1 integer linear programming problems. Eur. J. Oper. Res. 245(3), 690–703 (2015)

    Article  MathSciNet  Google Scholar 

  41. Steuer, R.E.: Multiple criteria optimization. Theory Comput. Appl. (1986)

  42. Ulungu, E.L., Teghem, J.: Multi-objective combinatorial optimization problems: a survey. J. Multi-criteria Decis. Anal. 3(2), 83–104 (1994)

    Article  Google Scholar 

  43. Vasko, F.J.: An efficient heuristic for large set covering problems. Naval Res. Logist. Q. 31(1), 163–171 (1984)

    Article  Google Scholar 

  44. Weerasena, L.: Algorithm for generalised multi-objective set covering problem with an application in ecological conservation. Int. J. Math. Model. Numer. Optim. 10(2), 167–186 (2020)

    MathSciNet  Google Scholar 

  45. Weerasena, L., Shier, D., Tonkyn, D.: A hierarchical approach to designing compact ecological reserve systems. Environ. Model. Assess. 19(5), 437–449 (2014)

    Article  Google Scholar 

  46. Weerasena, L., Wiecek, M.M.: A tolerance function for the multiobjective set covering problem. Optim. Lett. 1–19 (2018)

  47. Weerasena, L., Wiecek, M.M., Soylu, B.: An algorithm for approximating the pareto set of the multiobjective set covering problem. Ann. Oper. Res. 248(1–2), 493–514 (2017)

    Article  MathSciNet  Google Scholar 

  48. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: Multiple Criteria Decision Making Theory and Application, pp. 468–486. Springer (1980)

  49. Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to vector optimization problems. Oper. Res. Spektrum 8(2), 73–87 (1986)

    Article  MathSciNet  Google Scholar 

  50. Zhang, W., Reimann, M.: A simple augmentedâ-constraint method for multi-objective mathematical integer programming problems. Eur. J. Oper. Res. 234(1), 15–24 (2014)

    Article  MathSciNet  Google Scholar 

  51. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to all reviewers for the careful analysis of our text and valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakmali Weerasena.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weerasena, L., Ebiefung, A. & Skjellum, A. Design of a heuristic algorithm for the generalized multi-objective set covering problem. Comput Optim Appl 82, 717–751 (2022). https://doi.org/10.1007/s10589-022-00379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-022-00379-7

Keywords

Navigation