Skip to main content
Log in

Projected orthogonal vectors in two-dimensional search interior point algorithms for linear programming

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The vast majority of linear programming interior point algorithms successively move from an interior solution to an improved interior solution by following a single search direction, which corresponds to solving a one-dimensional subspace linear program at each iteration. On the other hand, two-dimensional search interior point algorithms select two search directions, and determine a new and improved interior solution by solving a two-dimensional subspace linear program at each step. This paper presents primal and dual two-dimensional search interior point algorithms derived from affine and logarithmic barrier search directions. Both search directions are determined by randomly partitioning the objective function into two orthogonal vectors. Computational experiments performed on benchmark instances demonstrate that these new methods improve the average CPU time by approximately 12% and the average number of iterations by 14%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors confirm that all data generated or analyzed during this study are included in this published article.

References

  1. Adler, I., Resende, M.G.C., Veiga, G., Karmarkar, N.: An implementation of Karmarkar’s algorithm for linear programming. Math. Program. 44(1–3), 297–335 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asadi, A., Roos, C.: Infeasible interior-point methods for linear optimization based on large neighborhood. J. Optim. Theory Appl. 170(2), 562–590 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnes, E.R.: A variation on Karmarkars algorithm for solving linear programming problems. Math. Program. 36(2), 174–182 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bayer, D.A., Lagarias, J.C.: The nonlinear geometry of linear programming. I affine and projective scaling trajectories. Trans. Am. Math. Soc. 314(2), 499–526 (1989)

    MATH  Google Scholar 

  5. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows, 4th edn. Wiley, Hoboken (2010)

    MATH  Google Scholar 

  6. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Scientific, Belmont (1997)

    Google Scholar 

  7. Boggs, P.T., Domich, P.D., Donaldson, J.R., Witzgall, C.: Algorithmic enhancements to the method of centers for linear programming problems. ORSA J. Comput. 1(3), 159–171 (1989)

    Article  MATH  Google Scholar 

  8. Bouafia, M., Benterki, D., Yassine, A.: An efficient primal-dual interior point method for linear programming problems based on a new kernel function with a trigonometric barrier term. J. Optim. Theory Appl. 170(2), 528–545 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezinski, C.: The life and work of André Cholesky. Numer. Algorithms 43(1), 279–288 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Cavichia, M.C., Arenales, M.N.: Piecewise linear programming via interior points. Comput. Oper. Res. 27(13), 1303–1324 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colombo, M., Gondzio, J.: Further development of multiple centrality correctors for interior point methods. Comput. Optim. Appl. 41(3), 277–305 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Czyzyk, J., Mehrotra, S., Wagner, M., Wright, S.J.: PCx: an interior-point code for linear programming. Optim. Methods Softw. 11(1–4), 397–430 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Darvay, Z., Takács, P.R.: New method for determining search directions for interior-point algorithms in linear optimization. Optim. Lett. 12(5), 1099–1116 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dikin, I.I.: Iterative solution of problems of linear and quadratic programming. Dokl. Akad. Nauk SSSR 174(4), 747–748 (1967)

    MathSciNet  MATH  Google Scholar 

  15. Domich, P.D., Boggs, P.T., Rogers, J.E., Witzgall, C.: Optimizing over three-dimensional subspaces in an interior-point method for linear programming. Linear Algebra Appl. 152(1), 315–342 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dongarra, J.J., Grosse, E.: Distribution of mathematical software via electronic mail. Commun. ACM 30(5), 403–407 (1987)

    Article  Google Scholar 

  17. Dyer, M.E.: Linear time algorithms for two- and three-variable linear programs. SIAM J. Comput. 13(1), 31–45 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dyer, M.E.: On a multidimensional search technique and its application to the Euclidean one-centre problem. SIAM J. Comput. 15(3), 725–738 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. El Ghami, M., Ivanov, I.D., Roos, C., Steihaug, T.: A polynomial-time algorithm for LO based on generalized logarithmic barrier functions. Int. J. Appl. Math. 21(1), 99–115 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Fang, S., Puthenpura, S.: Linear Optimization and Extensions: Theory and Algorithms. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  21. Gay, D.M.: Electronic mail distribution of linear programming test problems. Math. Program. Soc. COAL Newsl. 13, 10–12 (1985)

    Google Scholar 

  22. Gill, P.E., Murray, W., Saunders, M.A., Tomlin, J.A., Wright, M.H.: On the projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method. Math. Program. 36(2), 183–209 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Goldfarb, D., Todd, M.J.: Chapter II linear programming. In: Nemhauser, G.L., Rinnooy Kan, A.H.G., Todd, M.J. (eds.) Handbooks in Operations Research and Management Science, vol. 1, pp. 73–170. Elsevier, Amsterdam (1989)

    Google Scholar 

  24. Gondzio, J.: Multiple centrality corrections in a primal-dual method for linear programming. Comput. Optim. Appl. 6(2), 137–156 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gondzio, J.: Interior point methods 25 years later. Eur. J. Oper. Res. 218(3), 587–601 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gonzaga, C.C.: Search directions for interior linear-programming methods. Algorithmica 6(1–6), 153–181 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gonzaga, C.C.: Path-following methods for linear programming. SIAM Rev. 34(2), 167–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Güler, O., Ye, Y.: Convergence behavior of interior-point algorithms. Math. Program. 60(1–3), 215–228 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Huard, P.: Resolution of mathematical programming with nonlinear constraints by the method of centers. In: Abadie, J. (ed.) Nonlinear Programming, pp. 209–219. North-Holland, Amsterdam (1967)

    Google Scholar 

  30. Illés, T., Terlaky, T.: Pivot versus interior point methods: Pros and cons. Eur. J. Oper. Res. 140(2), 170–190 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jarre, F., Wechs, M.: Extending Mehrotra’s corrector for linear programs. Adv. Model. Optim. 1(2), 38–60 (1999)

    MATH  Google Scholar 

  32. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Proceedings of the 16th Annual ACM Symposium on Theory of Computing, New York, pp 302–311 (1984)

  33. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Karmarkar, N., Ramakrishnan, R.: Further developments in the new polynomial-time algorithm for linear programming. In: ORSA/TIMS Joint National Meeting, Boston (1985)

  35. Khachiyan, L.G.: A polynomial algorithm in linear programming. Sov. Math. Dokl. 20(1), 191–194 (1979)

    MathSciNet  MATH  Google Scholar 

  36. Kojima, M., Mizuno, S., Yoshise, A.: A primal-dual interior point algorithm for linear programming. In: Megiddo, N. (ed.) Progress in Mathematical Programming: Interior-Point and Related Methods, pp. 29–47. Springer, New York (1989)

    Chapter  Google Scholar 

  37. Kojima, M., Megiddo, N., Mizuno, S.: A primal-dual infeasible-interior-point algorithm for linear programming. Math. Program. 61(1–3), 263–280 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Luh, H., Tsaih, R.: An efficient search direction for linear programming problems. Comput. Oper. Res. 29(2), 195–203 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lustig, I.J., Marsten, R.E., Shanno, D.F.: On implementing Mehrotra’s predictor-corrector interior-point method for linear programming. SIAM J. Optim. 2(3), 435–449 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lustig, I.J., Marsten, R.E., Shanno, D.F.: Interior point methods for linear programming: computational state of the art. ORSA J. Comput. 6(1), 1–14 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. Megiddo, N.: Linear-time algorithms for linear programming in \({\mathbb{R}}^{3}\) and related problems. SIAM J. Comput. 12(4), 759–776 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  43. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. Assoc. Comput. Mach. 31(1), 114–127 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  44. Megiddo, N.: Pathways to the optimal set in linear programming. In: Megiddo, N. (ed.) Progress in Mathematical Programming: Interior-Point and Related Methods, pp. 131–158. Springer, New York (1989)

    Chapter  Google Scholar 

  45. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4), 575–601 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mehrotra, S., Li, Z.: Convergence conditions and Krylov subspace-based corrections for primal-dual interior-point method. SIAM J. Optim. 15(3), 635–653 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mei, G., Guennoun, Z.A., Bouali, S., Steihaug T.: Interior-point methods for linear optimization based on a kernel function with a trigonometric barrier term. J. Comput. Appl. Math. 236(15), 3613–3623 (2012)

  48. Mittelmann, H.D.: Decision tree for optimization software (2021). http://plato.asu.edu/guide.html

  49. Monteiro, R.D.C., Tsuchiya, T., Wang, Y.: A simplified global convergence proof of the affine scaling algorithm. Ann. Oper. Res. 46(2), 443–482 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  50. Peng, J., Roos, C., Tamás, Terlaky: A new and efficient large-update interior-point method for linear optimization. J. Comput. Technol. 6(4), 61–80 (2001)

    MathSciNet  MATH  Google Scholar 

  51. Saigal, R.: A simple proof of a primal affine scaling method. Ann. Oper. Res. 62(1), 303–324 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  52. Santos, L., Villas-Bôas, F., Oliveira, A.R.L., Perin, C.: Optimized choice of parameters in interior-point methods for linear programming. Comput. Optim. Appl. 73(2), 535–574 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Shamos, M.I., Hoey, D.: Geometric intersection problems. In: 17th Annual Symposium on Foundations of Computer Science, pp. 208–215. Houston, TX (1976)

    Google Scholar 

  54. Takács, P.R., Darvay, Z.: A primal-dual interior-point algorithm for symmetric optimization based on a new method for finding search directions. Optimization 67(6), 889–905 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  55. Terlaky, T., Zhang, S.: Pivot rules for linear programming: a survey on recent theoretical developments. Ann. Oper. Res. 46(1), 203–233 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  56. Todd, M.J.: The many facets of linear programming. Math. Program. 91(3), 417–436 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tseng, P., Luo, Z.: On the convergence of the affine-scaling algorithm. Math. Program. 56(1–3), 301–319 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tsuchiya, T.: Global convergence property of the affine scaling methods for primal degenerate linear programming problems. Math. Oper. Res. 17(3), 527–557 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  59. Vanderbei, R.J.: Linear Programming: Foundations and Extensions, 4th edn. International Series in Operations Research & Management Science, Springer, New York (2014)

    Book  MATH  Google Scholar 

  60. Vanderbei, R.J., Lagarias, J.C.: I. I. Dikin’s convergence result for the affine-scaling algorithm. Contemp. Math. 114(1), 109–119 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  61. Vanderbei, R.J., Meketon, M.S., Freedman, B.A.: A modification of Karmarkar’s linear programming algorithm. Algorithmica 1(1–4), 395–407 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  62. Villas-Bôas, F., Perin, C.: Postponing the choice of penalty parameterand step length. Comput. Optim. Appl. 24(1), 63–81 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  63. Vitor, F.: The ratio algorithm to solve the optimal basis of two constraint linear programs. In: Barker, K., Berry, D., Rainwater, C. (eds.) Proceedings of the 2018 IISE Annual Conference, Orlando, FL, pp 1949–1954 (2018)

  64. Vitor, F.T.: Two dimensional search algorithms for linear programming. PhD dissertation, Kansas State University, Mahattan (2019)

  65. Vitor, F., Easton, T.: The double pivot simplex method. Math. Methods Oper. Res. 87(1), 109–137 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  66. Vitor F, Easton T (2018b) A two dimensional search primal affine scaling interior point algorithm for linear programs. In: Barker K, Berry D, Rainwater C (eds) Proceedings of the 2018 IISE Annual Conference, Orlando, FL, pp 1961–1966

  67. Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  68. Wright, S.J.: Modified cholesky factorizations in interior-point algorithms for linear programming. SIAM J. Optim. 9(4), 1159–1191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  69. Yang, Y.: A polynomial arc-search interior-point algorithm for linear programming. J. Optim. Theory Appl. 158(3), 859–873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  70. Yang, Y.: Two computationally efficient polynomial-iteration infeasible interior-point algorithms for linear programming. Numer. Algorithms 79(3), 957–992 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  71. Yang, Y., Vitor, F.: A double-pivot degenerate-robust simplex algorithm for linear programming (2021). arXiv:2107.11451

  72. Yang, X., Zhang, Y., Liu, H.: A wide neighborhood infeasible-interior-point method with arc-search for linear programming. J. Appl. Math. Comput. 51(1–2), 209–225 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the National Science Foundation (NSF) under the EPSCoR research program – Grant No. OIA-1557417. The authors also thank the anonymous referees for their valuable suggestions that improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Vitor.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitor, F., Easton, T. Projected orthogonal vectors in two-dimensional search interior point algorithms for linear programming. Comput Optim Appl 83, 211–246 (2022). https://doi.org/10.1007/s10589-022-00385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-022-00385-9

Keywords

Mathematics Subject Classification

Navigation