Skip to main content
Log in

T-product factorization based method for matrix and tensor completion problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Low rank matrix and tensor completion problems are to recover the incomplete two and higher order data of low rank structures. The essential problem in the matrix and tensor completion problems is how to improve the efficiency. For a matrix completion problem, we establish a relationship between matrix rank and tensor tubal rank, and reformulate matrix completion problem as a third order tensor completion problem. For the reformulated tensor completion problem, we adopt a two-stage strategy based on tensor factorization algorithm. In this way, a matrix completion problem of big size can be solved via some matrix computations of smaller sizes. For a third order tensor completion problem, to fully exploit the low rank structures, we introduce the double tubal rank which combines the tubal rank of two tensors, original tensor and the reshaped tensor of the mode-3 unfolding matrix of original tensor. Based on this, we propose a reweighted tensor factorization algorithm for third order tensor completion. Extensive numerical experiments demonstrate that the proposed methods outperform state-of-the-art methods in terms of both accuracy and running time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated by the study during and/or analyzed during the current research are available in the Dataverse repository: https://github.com/quanyumath/DTRTC.

Notes

  1. http://sipi.usc.edu/database/.

  2. http://sipi.usc.edu/database/.

References

  1. Bai, M., Zhang, X., Ni, G., Cui, C.: An adaptive correction approach for tensor completion. SIAM J. Imaging Sci. 9(3), 1298–1323 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bengua, J.A., Phien, H.N., Tuan, H.D., Do, M.N.: Efficient tensor completion for color image and video recovery: low-rank tensor train. IEEE Trans. Image Process. 26(5), 2466–2479 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Border, K.: The supergradient of a concave function (2001). https://healy.econ.ohio-state.edu/kcb/Notes/Supergrad.pdf

  4. Cabral, R., De la Torre, F., Costeira, J.P., Bernardino, A.: Matrix completion for weakly-supervised multi-label image classification. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 121–135 (2015)

    Article  Google Scholar 

  5. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Prob. 27(2), 025010 (2011). https://doi.org/10.1088/0266-5611/27/2/025010

    Article  MathSciNet  MATH  Google Scholar 

  7. Gao, B., Absil, P.A.: A Riemannian rank-adaptive method for low-rank matrix completion. Comput. Optim. Appl. 81(1), 67–90 (2021). https://doi.org/10.1007/s10589-021-00328-w

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo, H., Yu, Q., Zhang, X., Cheng, L.: Low rank matrix minimization with a truncated difference of nuclear norm and frobenius norm regularization. J. Ind. Manag. Optim. (2022). https://doi.org/10.3934/jimo.2022045

    Article  Google Scholar 

  9. He, Y., Wang, F., Li, Y., Qin, J., Chen, B.: Robust matrix completion via maximum correntropy criterion and half-quadratic optimization. IEEE Trans. Signal Process. 68, 181–195 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hillar, C.J., Lim, L.H.: Most tensor problems are NP-hard. J. ACM 60(6), 1–39 (2013). https://doi.org/10.1145/2512329

    Article  MathSciNet  MATH  Google Scholar 

  11. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6(1–4), 164–189 (1927)

    Article  MATH  Google Scholar 

  12. Jiang, T.X., Ng, M.K., Zhao, X.L., Huang, T.Z.: Framelet representation of tensor nuclear norm for third-order tensor completion. IEEE Trans. Image Process. 29, 7233–7244 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Keshavan, R.H., Montanari, A., Oh, S.: Matrix completion from a few entries. IEEE Trans. Inf. Theory 56(6), 2980–2998 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013). https://doi.org/10.1137/110837711

    Article  MathSciNet  MATH  Google Scholar 

  15. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3), 641–658 (2011). https://doi.org/10.1016/j.laa.2010.09.020

    Article  MathSciNet  MATH  Google Scholar 

  16. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, C., Li, Y., Monga, V.: Ghost-free high dynamic range imaging via rank minimization. IEEE Signal Process. Lett. 21(9), 1045–1049 (2014)

    Article  Google Scholar 

  18. Li, Y.F., Shang, K., Huang, Z.H.: A singular value p-shrinkage thresholding algorithm for low rank matrix recovery. Comput. Optim. Appl. 73(2), 453–476 (2019). https://doi.org/10.1007/s10589-019-00084-y

    Article  MathSciNet  MATH  Google Scholar 

  19. Ling, C., Yu, G., Qi, L., Xu, Y.: T-product factorization method for internet traffic data completion with spatio-temporal regularization. Comput. Optim. Appl. 80(3), 883–913 (2021). https://doi.org/10.1007/s10589-021-00315-1

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)

    Article  Google Scholar 

  21. Liu, Y.J., Sun, D., Toh, K.C.: An implementable proximal point algorithmic framework for nuclear norm minimization. Math. Program. 133(1), 399–436 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu, C., Tang, J., Yan, S., Lin, Z.: Generalized nonconvex nonsmooth low-rank minimization. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2014). https://doi.org/10.1109/cvpr.2014.526

  23. Luo, Y., Liu, T., Tao, D., Xu, C.: Multiview matrix completion for multilabel image classification. IEEE Trans. Image Process. 24(8), 2355–2368 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimization. Math. Program. 128(1), 321–353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Martin, C.D., Shafer, R., LaRue, B.: An order-\(p\) tensor factorization with applications in imaging. SIAM J. Sci. Comput. 35(1), A474–A490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mazumder, R., Hastie, T., Tibshirani, R.: Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 11(1), 2287–2322 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Mu, C., Huang, B., Wright, J., Goldfarb, D.: Square deal: lower bounds and improved relaxations for tensor recovery. In: Proceedings of the 31st International Conference on International Conference on Machine Learning, vol. 32, pp. II-73–II-81 (2014)

  28. Oh, T.H., Lee, J.Y., Tai, Y.W., Kweon, I.S.: Robust high dynamic range imaging by rank minimization. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1219–1232 (2015)

    Article  Google Scholar 

  29. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qi, L., Chen, Y., Bakshi, M., Zhang, X.: Triple decomposition and tensor recovery of third order tensors. SIAM J. Matrix Anal. Appl. 42(1), 299–329 (2021). https://doi.org/10.1137/20m1323266

    Article  MathSciNet  MATH  Google Scholar 

  31. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Recht, B., Ré, C.: Parallel stochastic gradient algorithms for large-scale matrix completion. Math. Program. Comput. 5(2), 201–226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rojo, O., Rojo, H.: Some results on symmetric circulant matrices and on symmetric centrosymmetric matrices. Linear Algebra Appl. 392(15), 211–233 (2004). https://doi.org/10.1016/j.laa.2004.06.013

    Article  MathSciNet  MATH  Google Scholar 

  34. Roughan, M., Zhang, Y., Willinger, W., Qiu, L.: Spatio-temporal compressive sensing and internet traffic matrices (extended version). IEEE/ACM Trans. Netw. 20(3), 662–676 (2012)

    Article  Google Scholar 

  35. Sobral, A., Zahzah, Eh.: Matrix and tensor completion algorithms for background model initialization: a comparative evaluation. Pattern Recognit. Lett. 96(1), 22–33 (2017)

    Article  Google Scholar 

  36. Toh, K.C., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. 6(3), 615–640 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Tsagkatakis, G., Tsakalides, P.: Efficient high dynamic range imaging via matrix completion. In: 2012 IEEE International Workshop on Machine Learning for Signal Processing, pp. 1–6 (2012)

  38. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  39. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/tip.2003.819861

    Article  Google Scholar 

  40. Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4(4), 333–361 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xie, Y., Gu, S., Liu, Y., Zuo, W., Zhang, W., Zhang, L.: Weighted Schatten \(p\)-norm minimization for image denoising and background subtraction. IEEE Trans. Image Process. 25(10), 4842–4857 (2016). https://doi.org/10.1109/tip.2016.2599290

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu, Y.: Alternating proximal gradient method for sparse nonnegative tucker decomposition. Math. Program. Comput. 7(1), 39–70 (2015). https://doi.org/10.1007/s12532-014-0074-y

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu, Y., Hao, R., Yin, W., Su, Z.: Parallel matrix factorization for low-rank tensor completion. Inverse Probl. Imaging 9(2), 601–624 (2015). https://doi.org/10.3934/ipi.2015.9.601

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6(3), 1758–1789 (2013). https://doi.org/10.1137/120887795

    Article  MathSciNet  MATH  Google Scholar 

  45. Xu, Y., Yin, W., Wen, Z., Zhang, Y.: An alternating direction algorithm for matrix completion with nonnegative factors. Front. Math. China 7(2), 365–384 (2012). https://doi.org/10.1007/s11464-012-0194-5

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang, L., Huang, Z.H., Hu, S., Han, J.: An iterative algorithm for third-order tensor multi-rank minimization. Comput. Optim. Appl. 63(1), 169–202 (2015). https://doi.org/10.1007/s10589-015-9769-x

    Article  MathSciNet  MATH  Google Scholar 

  47. Yu, Q., Zhang, X.: A smoothing proximal gradient algorithm for matrix rank minimization problem. Comput. Optim. Appl. 81(2), 519–538 (2022). https://doi.org/10.1007/s10589-021-00337-9

    Article  MathSciNet  MATH  Google Scholar 

  48. Yu, Q., Zhang, X., Chen, Y., Qi, L.: Low tucker rank tensor completion using a symmetric block coordinate descent method. Numer. Linear Algebra Appl. (2022). https://doi.org/10.1002/nla.2464

    Article  Google Scholar 

  49. Zeng, W.J., So, H.C.: Outlier-robust matrix completion via \(\ell _p\)-minimization. IEEE Trans. Signal Process. 66(5), 1125–1140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011). https://doi.org/10.1109/tip.2011.2109730

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, X.: A nonconvex relaxation approach to low-rank tensor completion. IEEE Trans. Neural Netw. Learn. Syst. 30(6), 1659–1671 (2019)

    Article  MathSciNet  Google Scholar 

  52. Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.: Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3842–3849 (2014)

  53. Zhao, Q., Zhou, G., Xie, S., Zhang, L., Cichocki, A.: Tensor ring decomposition (2016). arXiv:1606.05535

  54. Zheng, Y., Liu, G., Sugimoto, S., Yan, S., Okutomi, M.: Practical low-rank matrix approximation under robust L1-norm. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1410–1417 (2012)

  55. Zheng, Y.B., Huang, T.Z., Zhao, X.L., Jiang, T.X., Ji, T.Y., Ma, T.H.: Tensor n-tubal rank and its convex relaxation for low-rank tensor recovery. Inf. Sci. 532, 170–189 (2020). https://doi.org/10.1016/j.ins.2020.05.005

    Article  MathSciNet  MATH  Google Scholar 

  56. Zheng, Y.B., Huang, T.Z., Zhao, X.L., Jiang, T.X., Ma, T.H., Ji, T.Y.: Mixed noise removal in hyperspectral image via low-fibered-rank regularization. IEEE Trans. Geosci. Remote Sens. 58(1), 734–749 (2020). https://doi.org/10.1109/tgrs.2019.2940534

    Article  Google Scholar 

  57. Zhou, P., Lu, C., Lin, Z., Zhang, C.: Tensor factorization for low-rank tensor completion. IEEE Trans. Image Process. 27(3), 1152–1163 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Xinzhen Zhang was supported by the National Natural Science Foundation of China (Grant No. 11871369).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzhen Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Zhang, X. T-product factorization based method for matrix and tensor completion problems. Comput Optim Appl 84, 761–788 (2023). https://doi.org/10.1007/s10589-022-00439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-022-00439-y

Keywords

Navigation