Skip to main content
Log in

An efficient global algorithm for indefinite separable quadratic knapsack problems with box constraints

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The indefinite separable quadratic knapsack problem (ISQKP) with box constraints is known to be NP-hard. In this paper, we propose a new branch-and-bound algorithm based on a convex envelope relaxation that can be efficiently solved by exploiting its special dual structure. Benefiting from a new branching strategy, the complexity of the proposed algorithm is quadratic in terms of the number of variables when the number of negative eigenvalues in the objective function of ISQKP is fixed. We then improve the proposed algorithm for the case that ISQKP has symmetric structures. The improvement is achieved by constructing tight convex relaxations based on the aggregate functions. Numerical experiments on large-size instances show that the proposed algorithm is much faster than Gurobi and CPLEX. It turns out that the proposed algorithm can solve the instances of size up to three million in less than twenty seconds on average and its improved version is still very efficient for problems with symmetric structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability statement

The data that support the findings of this study are available from the corresponding author upon request.

Notes

  1. Note that all the constraints in (SP) are linear, the optimal solution of (SP) must satisfy the KKT condition, without further assumption on constraint qualifications.

References

  1. Du, D.-Z., Pardalos, P.M.: Handbook of Combinatorial Optimization, vol. 4. Springer, Boston (1998)

    Book  MATH  Google Scholar 

  2. Horst, R., Pardalos, P.M., Van Thoai, N.: Introduction to Global Optimization, 2nd edn. Springer, New York (2000)

    Book  MATH  Google Scholar 

  3. Pisinger, D., Toth, P.: Knapsack Problems. In: Du, D.Z., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. pp. 299–428. Springer, Boston, MA (1998). https://doi.org/10.1007/978-1-4613-0303-9_5

  4. Vavasis, S.A.: Local minima for indefinite quadratic knapsack problems. Math. Program. 54(1), 127–153 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pardalos, P.M., Kovoor, N.: An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds. Math. Program. 46(1), 321–328 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dai, Y.-H., Fletcher, R.: New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. Math. Program. 106(3), 403–421 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cominetti, R., Mascarenhas, W.F., Silva, P.J.S.: A newton’s method for the continuous quadratic knapsack problem. Math. Program. Comput. 6(1), 151–169 (2014). https://doi.org/10.1007/s12532-014-0066-y

    Article  MathSciNet  MATH  Google Scholar 

  8. Jeong, J.: Indefinite knapsack separable quadratic programming: methods and applications. Ph.D thesis, University of Tennessee, Knoxville (2014)

  9. De Marchi, A.: On a primal-dual newton proximal method for convex quadratic programs. Comput. Optim. Appl. 81(2), 369–395 (2022)

  10. Moré, J.J., Vavasis, S.A.: On the solution of concave knapsack problems. Math. Program. 49(1), 397–411 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Vavasis, S.A.: Approximation algorithms for indefinite quadratic programming. Math. Program. 57(1), 279–311 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Edirisinghe, C., Jeong, J.: Tight bounds on indefinite separable singly-constrained quadratic programs in linear-time. Math. Program. 164(1), 193–227 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, J., Burer, S.: Globally solving nonconvex quadratic programming problems via completely positive programming. Math. Program. Comput. 4(1), 33–52 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Edirisinghe, C., Jeong, J.: An efficient global algorithm for a class of indefinite separable quadratic programs. Math. Program. 158(1), 143–173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Edirisinghe, C., Jeong, J.: Indefinite multi-constrained separable quadratic optimization: Large-scale efficient solution. Eur. J. Oper. Res. 278(1), 49–63 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhou, J., Fang, S.-C., Xing, W.: Conic approximation to quadratic optimization with linear complementarity constraints. Comput. Optim. Appl. 66(1), 97–122 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pardalos, P.M., Rosen, J.B.: Constrained Global Optimization: Algorithms and Applications. Springer, Berlin (1987). https://doi.org/10.1007/BFb0000035

  18. Kamesam, P., Meyer, R.R.: Multipoint methods for separable nonlinear networks. In: Mathematical Programming at Oberwolfach II, pp. 185–205. Springer, Berlin (1984)

  19. Friedman, E.J.: Fundamental domains for integer programs with symmetries. In: International Conference on Combinatorial Optimization and Applications, pp. 146–153. Springer (2007)

  20. Liberti, L.: Reformulations in mathematical programming: automatic symmetry detection and exploitation. Math. Program. 131(1), 273–304 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liberti, L., Ostrowski, J.: Stabilizer-based symmetry breaking constraints for mathematical programs. J. Global Optim. 60(2), 183–194 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Math. Program. 126(1), 147–178 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ostrowski, J., Anjos, M.F., Vannelli, A.: Modified orbital branching for structured symmetry with an application to unit commitment. Math. Program. 150(1), 99–129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Math. Program. 114(1), 1–36 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaibel, V., Peinhardt, M., Pfetsch, M.E.: Orbitopal fixing. Discret. Optim. 8(4), 595–610 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bendotti, P., Fouilhoux, P., Rottner, C.: Orbitopal fixing for the full (sub-) orbitope and application to the unit commitment problem. Math. Program. 186(1), 337–372 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fang, S.-C., Xing, W.X.: Linear Conic Optimization. Science Press, Beijing (2013)

    Google Scholar 

  28. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (2009)

    MATH  Google Scholar 

  29. Liuzzi, G., Locatelli, M., Piccialli, V., Rass, S.: Computing mixed strategies equilibria in presence of switching costs by the solution of nonconvex qp problems. Comput. Optim. Appl. 79(3), 561–599 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113(2), 259–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pardalos, P.M.: Polynomial time algorithms for some classes of constrained nonconvex quadratic problems. Optimization 21(6), 843–853 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Lu’s research has been supported by National Natural Science Foundation of China Grant No. 12171151. Deng’s research has been supported by the National Natural Science Foundation of China Grant No. T2293774, by the Fundamental Research Funds for the Central Universities E2ET0808X2, and by the grant from MOE Social Science Laboratory of Digital Economic Forecast and Policy Simulation at UCAS. Wang’s research has been supported by China Postdoctoral Research Foundation No. 2022M713102 and the Fundamental Research Funds for the Central Universities No. E2E49801.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhibin Deng or Qiao Wang.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Deng, Z., Lu, C. et al. An efficient global algorithm for indefinite separable quadratic knapsack problems with box constraints. Comput Optim Appl 86, 241–273 (2023). https://doi.org/10.1007/s10589-023-00488-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-023-00488-x

Keywords

Navigation