Skip to main content
Log in

A trust-region LP-Newton method for constrained nonsmooth equations under Hölder metric subregularity

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We describe and analyze a globally convergent algorithm to find a possible nonisolated zero of a piecewise smooth mapping over a polyhedral set. Such formulation includes Karush–Kuhn–Tucker systems, variational inequalities problems, and generalized Nash equilibrium problems. Our algorithm is based on a modification of the fast locally convergent Linear Programming (LP)-Newton method with a trust-region strategy for globalization that makes use of the natural merit function. The transition between global and local convergence occurs naturally under mild assumption. Our local convergence analysis of the method is performed under a Hölder metric subregularity condition of the mapping defining the possibly nonsmooth equation and the Hölder continuity of the derivative of the selection mapping. We present numerical results that show the feasibility of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Ahookhosh, M., Artacho, F.A., Fleming, R.M.T., Voung, P.T.: Local convergence of the Levenberg–Marquardt method under Holder metric subregularity. Adv. Comput. Math. 45, 2771–2806 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreani, R., Martínez, J., Ramos, A., Silva, P.: Strict constraint qualifications and sequential optimality conditions for constrained optimization. Math. Oper. Res. 43(3), 693–717 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting and regularized Gauss-Seidel methods. Math. Program. 1(2), 91–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Behling, R., Fischer, A., Haeser, G., Ramos, A., Schonefeld, K.: On the constrained error bound condition and the projected Levenberg–Marquardt method. Optimization 66(8), 1397–1411 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertsekas, D.P.: Nonlinear Programming. Athenas Scientific, Nashua (1999)

    MATH  Google Scholar 

  6. Billups, S., Murty, K.: Complementarity problems. J. Comput. Appl. Math. 124, 303 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Birgin, E.G., Krejic, N., Martinez, J.M.: Globally convergent inexact quasi-Newton methods for solving nonlinear systems. Numer. Algorithms 32, 249–260 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burden, R.L., Faires, J.D.: Numerical Analysis. Thomson Brooks/Cole, Boston (2005)

    MATH  Google Scholar 

  9. Dembo, R., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 2, 400–408 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Facchinei, F., Kanzow, C.: Penalty methods for the solution of generalized Nash equilibrium problems (with complete test problems). Tech. rep., Institute of Mathematics, University of Würzburg, Würzburg, Germany (2009)

  12. Facchinei, F., Pang, J.: Finite Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    MATH  Google Scholar 

  13. Facchinnei, F., Fischer, A., Herrich, M.: An LP-Newton method: Nonsmooth equations, KKT systems, and nonisolated solutions. Math. Program. 146, 1–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fischer, A., Herrich, M., Izmailov, A., Solodov, M.: A globally convergent LP-Newton method. SIAM J. Optim. 26, 2012–2033 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fischer, A., Herrich, M., Izmailov, A.F., Scheck, W., Solodov, M.V.: A globally convergent LP-Newton method for piecewise smooth constrained equations: escaping nonstationary accumulation points. Comput. Optim. Appl. 69, 325–349 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fischer, A., Jelitte, M.: On noncritical solutions of complementarity systems. In: Recent Trends in Mathematical Modeling and High Performance Computing, pp. 129–141. Springer (2021)

  17. Harker, P.T.: Generalized Nash games and quasi-variational inequalities. Eur. J. Oper. Res. 54(1), 81–94 (1991)

    Article  MATH  Google Scholar 

  18. von Heusinger, A.: Numerical methods for the solution of the generalized Nash equilibrium problem. Ph.D. thesis, Institute of Mathematics, University of Würzburg, Würzburg, Germany (2009)

  19. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. SIAM Society for Industrial and Applied Mathematics, Philadelphia (2008)

    Book  MATH  Google Scholar 

  20. Izmailov, A.F., Solodov, M.V.: Newton-type Methods for Optimization and Variational Problems. Springer Series in Operation Research and Financial Engineering. Springer, Berlin (2014)

    Google Scholar 

  21. Izmailov, A.F., Solodov, M.V., Uskov, E.I.: A globally convergent Levenberg–Marquardt method for equality-constrained optimization. Comput. Optim. Appl. 72, 215–239 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kanzow, C., Yamashita, N., Fukushima, M.: Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. J. Comput. Appl. Math. 172, 375–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Martínez, M.A., Fernández, D.: A quasi-Newton modified LP-Newton method. Optim. Methods Softw (2017)

  24. Martínez, M.A., Fernández, D.: On the local and superlinear convergence of a secant modified linear-programming-Newton method. J. Optim. Theory Appl. pp 1–18 (2018)

  25. Nabetani, K., Tseng, P., Fukushima, M.: Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints. Comput. Optim. Appl. 48(3), 423–452 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  27. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in several variables. Academic Press, Cambridge (1970)

    MATH  Google Scholar 

  28. Rockafellar, R.T., Wets, R.: Variational Analysis. Series: Grundlehren der mathematischen Wissenschaften, vol. 317. Springer, Berlin (2009)

    MATH  Google Scholar 

  29. Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization. Society for Industrial and Applied Mathematics, New Delhi (2011)

    MATH  Google Scholar 

  30. Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg–Marquardt method. In: Alefeld, G., Chen, X. (eds.) Topics in Numerical Analysis, vol. 15. Springer, Vienna (2001)

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for their valuable reports, whose careful comments and insights have helped a lot to improve the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Ramos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by CNPq (Grant 438185/2018-8, 307270/2019-0), CAPES, CONICET (PIP 11220150100500CO) and SeCyT-UNC (PID 33620180100326CB), FONDECYT regular N\(^{\circ }\) 1231188.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becher, L., Fernández, D. & Ramos, A. A trust-region LP-Newton method for constrained nonsmooth equations under Hölder metric subregularity. Comput Optim Appl 86, 711–743 (2023). https://doi.org/10.1007/s10589-023-00498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-023-00498-9

Keywords

Mathematics Subject Classification

Navigation